-
1
-
-
0026841035
-
Analysis of a one-dimensional model for the immersed boundary method
-
2
-
Beyer, R.P., LeVeque, R.J.: Analysis of a one-dimensional model for the immersed boundary method. SIAM J. Numer. Anal. 29(2), 332-364 (1992)
-
(1992)
SIAM J. Numer. Anal.
, vol.29
, pp. 332-364
-
-
Beyer, R.P.1
Leveque, R.J.2
-
2
-
-
0001183792
-
A kinetic formulation for multi-branch entropy solutions of scalar conservation laws
-
2
-
Brenier, Y., Corrias, L.: A kinetic formulation for multi-branch entropy solutions of scalar conservation laws. Ann. Inst. Henri Poincaré Anal. Non Linéaire 15(2), 169-190 (1998)
-
(1998)
Ann. Inst. Henri Poincaré Anal. Non Linéaire
, vol.15
, pp. 169-190
-
-
Brenier, Y.1
Corrias, L.2
-
3
-
-
49749115958
-
An Efficient level set method for constructing wave fronts in three space dimensions
-
Cheng, L.-T.: An Efficient level set method for constructing wave fronts in three space dimensions. UCLA CAM Report (15) (2006)
-
(2006)
UCLA CAM Report
, Issue.15
-
-
Cheng, L.-T.1
-
4
-
-
3242697504
-
Computational high-frequency wave propagation using the level set method, with applications to the semi-classical limit of Schrödinger equations
-
3
-
Cheng, L.-T., Liu, H., Osher, S.: Computational high-frequency wave propagation using the level set method, with applications to the semi-classical limit of Schrödinger equations. Commun. Math. Sci. 1(3), 593-621 (2003)
-
(2003)
Commun. Math. Sci.
, vol.1
, pp. 593-621
-
-
Cheng, L.-T.1
Liu, H.2
Osher, S.3
-
5
-
-
84967758647
-
Viscosity solutions of Hamilton-Jacobi equations
-
1
-
Crandall, M.G., Lions, P.-L.: Viscosity solutions of Hamilton-Jacobi equations. Trans. Am. Math. Soc. 277(1), 1-42 (1983)
-
(1983)
Trans. Am. Math. Soc.
, vol.277
, pp. 1-42
-
-
Crandall, M.G.1
Lions, P.-L.2
-
6
-
-
0030571228
-
Multi-phase computations in geometrical optics
-
1-2. TICAM Symposium (Austin, TX, 1995)
-
Engquist, B., Runborg, O.: Multi-phase computations in geometrical optics. J. Comput. Appl. Math. 74(1-2), 175-192 (1996). TICAM Symposium (Austin, TX, 1995)
-
(1996)
J. Comput. Appl. Math.
, vol.74
, pp. 175-192
-
-
Engquist, B.1
Runborg, O.2
-
7
-
-
24644487123
-
Computational high frequency wave propagation
-
Cambridge University Press Cambridge
-
Engquist, B., Runborg, O.: Computational high frequency wave propagation. In: Acta Numerica, vol. 12, pp. 181-266. Cambridge University Press, Cambridge (2003)
-
(2003)
Acta Numerica
, vol.12
, pp. 181-266
-
-
Engquist, B.1
Runborg, O.2
-
8
-
-
18344388470
-
Discretization of Dirac delta functions in level set methods
-
1
-
Engquist, B., Tornberg, A.-K., Tsai, R.: Discretization of Dirac delta functions in level set methods. J. Comput. Phys. 207(1), 28-51 (2005)
-
(2005)
J. Comput. Phys.
, vol.207
, pp. 28-51
-
-
Engquist, B.1
Tornberg, A.-K.2
Tsai, R.3
-
9
-
-
0037143007
-
Using K-branch entropy solutions for multivalued geometric optics computations
-
1
-
Gosse, L.: Using K-branch entropy solutions for multivalued geometric optics computations. J. Comput. Phys. 180(1), 155-182 (2002)
-
(2002)
J. Comput. Phys.
, vol.180
, pp. 155-182
-
-
Gosse, L.1
-
10
-
-
0442275913
-
Two moment systems for computing multiphase semiclassical limits of the Schrödinger equation
-
12
-
Gosse, L., Jin, S., Li, X.: Two moment systems for computing multiphase semiclassical limits of the Schrödinger equation. Math. Models Methods Appl. Sci. 13(12), 1689-1723 (2003)
-
(2003)
Math. Models Methods Appl. Sci.
, vol.13
, pp. 1689-1723
-
-
Gosse, L.1
Jin, S.2
Li, X.3
-
11
-
-
0035273564
-
Strong stability-preserving high-order time discretization methods
-
1. (electronic)
-
Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89-112 (2001) (electronic)
-
(2001)
SIAM Rev.
, vol.43
, pp. 89-112
-
-
Gottlieb, S.1
Shu, C.-W.2
Tadmor, E.3
-
12
-
-
0040400294
-
Preliminary results on the extension of ENO schemes to two-dimensional problems
-
Springer Berlin
-
Harten, A.: Preliminary results on the extension of ENO schemes to two-dimensional problems. In: Nonlinear Hyperbolic Problems, (St. Etienne, 1986). Lect. Notes in Math., vol. 1270, pp. 23-40. Springer, Berlin (1987)
-
(1987)
Nonlinear Hyperbolic Problems (St. Etienne, 1986) Lect. Notes in Math
, vol.1270
, pp. 23-40
-
-
Harten, A.1
-
13
-
-
0000999245
-
ENO schemes with subcell resolution
-
1
-
Harten, A.: ENO schemes with subcell resolution. J. Comput. Phys. 83(1), 148-184 (1989)
-
(1989)
J. Comput. Phys.
, vol.83
, pp. 148-184
-
-
Harten, A.1
-
14
-
-
0442331531
-
Multi-phase computations of the semiclassical limit of the Schrödinger equation and related problems: Whitham vs. Wigner
-
1-2
-
Jin, S., Li, X.: Multi-phase computations of the semiclassical limit of the Schrödinger equation and related problems: Whitham vs. Wigner. Physica D 182(1-2), 46-85 (2003)
-
(2003)
Physica D
, vol.182
, pp. 46-85
-
-
Jin, S.1
Li, X.2
-
15
-
-
23944519965
-
Computing multi-valued physical observables for the high frequency limit of symmetric hyperbolic systems
-
2
-
Jin, S., Liu, H., Osher, S., Tsai, R.: Computing multi-valued physical observables for the high frequency limit of symmetric hyperbolic systems. J. Comput. Phys. 210(2), 497-518 (2005)
-
(2005)
J. Comput. Phys.
, vol.210
, pp. 497-518
-
-
Jin, S.1
Liu, H.2
Osher, S.3
Tsai, R.4
-
16
-
-
16844373042
-
Computing multivalued physical observables for the semiclassical limit of the Schrödinger equation
-
1
-
Jin, S., Liu, H., Osher, S., Tsai, Y.-H.R.: Computing multivalued physical observables for the semiclassical limit of the Schrödinger equation. J. Comput. Phys. 205(1), 222-241 (2005)
-
(2005)
J. Comput. Phys.
, vol.205
, pp. 222-241
-
-
Jin, S.1
Liu, H.2
Osher, S.3
Tsai, Y.-H.R.4
-
17
-
-
3242673880
-
A level set method for the computation of multivalued solutions to quasi-linear hyperbolic PDEs and Hamilton-Jacobi equations
-
3
-
Jin, S., Osher, S.: A level set method for the computation of multivalued solutions to quasi-linear hyperbolic PDEs and Hamilton-Jacobi equations. Commun. Math. Sci. 1(3), 575-591 (2003)
-
(2003)
Commun. Math. Sci.
, vol.1
, pp. 575-591
-
-
Jin, S.1
Osher, S.2
-
18
-
-
0000220623
-
First order quasilinear equations with several independent variables
-
123
-
Kružkov, S.N.: First order quasilinear equations with several independent variables. Mat. Sb. (N.S.) 81(123), 228-255 (1970)
-
(1970)
Mat. Sb. (N.S.)
, vol.81
, pp. 228-255
-
-
Kružkov, S.N.1
-
19
-
-
33845497473
-
A level set framework for capturing multi-valued solutions to nonlinear first-order equations
-
3
-
Liu, H., Cheng, L.-T., Osher, S.: A level set framework for capturing multi-valued solutions to nonlinear first-order equations. J. Sci. Comput. 29(3), 353-373 (2006)
-
(2006)
J. Sci. Comput.
, vol.29
, pp. 353-373
-
-
Liu, H.1
Cheng, L.-T.2
Osher, S.3
-
20
-
-
34447280082
-
Multi-valued solution and level set methods in computational high frequencywave propagation
-
5
-
Liu, H., Osher, S., Tsai, R.: Multi-valued solution and level set methods in computational high frequencywave propagation. Commun. Comput. Phys. 1(5), 765-804 (2006)
-
(2006)
Commun. Comput. Phys.
, vol.1
, pp. 765-804
-
-
Liu, H.1
Osher, S.2
Tsai, R.3
-
21
-
-
34147167264
-
Computing multi-valued velocity and electric fields for 1d Euler-Poisson equations
-
5-7
-
Liu, H., Wang, Z.: Computing multi-valued velocity and electric fields for 1d Euler-Poisson equations. Appl. Numer. Math. 57(5-7), 821-836 (2007)
-
(2007)
Appl. Numer. Math.
, vol.57
, pp. 821-836
-
-
Liu, H.1
Wang, Z.2
-
22
-
-
34447264074
-
A filed-space based level set method for computing mult-valued solutions to 1d Euler-Poisson equations
-
1
-
Liu, H., Wang, Z.: A filed-space based level set method for computing mult-valued solutions to 1d Euler-Poisson equations. J. Comput. Phys. 225(1), 591-614 (2007)
-
(2007)
J. Comput. Phys.
, vol.225
, pp. 591-614
-
-
Liu, H.1
Wang, Z.2
-
23
-
-
4544273739
-
Local level set method in high dimension and codimension
-
1
-
Min, C.: Local level set method in high dimension and codimension. J. Comput. Phys. 200(1), 368-382 (2004)
-
(2004)
J. Comput. Phys.
, vol.200
, pp. 368-382
-
-
Min, C.1
-
24
-
-
0036647932
-
Geometric optics in a phase-space-based level set and Eulerian framework
-
2
-
Osher, S., Cheng, L.-T., Kang, M., Shim, H., Tsai, Y.-H.: Geometric optics in a phase-space-based level set and Eulerian framework. J. Comput. Phys. 179(2), 622-648 (2002)
-
(2002)
J. Comput. Phys.
, vol.179
, pp. 622-648
-
-
Osher, S.1
Cheng, L.-T.2
Kang, M.3
Shim, H.4
Tsai, Y.-H.5
-
25
-
-
0026204106
-
High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations
-
4
-
Osher, S., Shu, C.-W.: High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM J. Numer. Anal. 28(4), 907-922 (1991)
-
(1991)
SIAM J. Numer. Anal.
, vol.28
, pp. 907-922
-
-
Osher, S.1
Shu, C.-W.2
-
26
-
-
0001167356
-
A PDE-based fast local level set method
-
2
-
Peng, D., Merriman, B., Osher, S., Zhao, H., Kang, M.: A PDE-based fast local level set method. J. Comput. Phys. 155(2), 410-438 (1999)
-
(1999)
J. Comput. Phys.
, vol.155
, pp. 410-438
-
-
Peng, D.1
Merriman, B.2
Osher, S.3
Zhao, H.4
Kang, M.5
-
27
-
-
84864181900
-
On the numerical analysis of particle simulations in plasma physics
-
Pitman Boston
-
Raviart, P.-A.: On the numerical analysis of particle simulations in plasma physics. In: Nonlinear Partial Differential Equations and Their Applications. Collège de France Seminar, vol. IV, Paris, 1981/1982. Res. Notes in Math., vol. 84, pp. 173-193. Pitman, Boston (1983)
-
(1983)
Nonlinear Partial Differential Equations and Their Applications. Collège de France Seminar, Vol. IV, Paris, 1981/1982. Res. Notes in Math
, vol.84
, pp. 173-193
-
-
Raviart, P.-A.1
-
29
-
-
45449125925
-
Efficient implementation of essentially nonoscillatory shock-capturing schemes
-
2
-
Shu, C.-W., Osher, S.: Efficient implementation of essentially nonoscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439-471 (1988)
-
(1988)
J. Comput. Phys.
, vol.77
, pp. 439-471
-
-
Shu, C.-W.1
Osher, S.2
-
30
-
-
0001568854
-
Efficient implementation of essentially nonoscillatory shock-capturing schemes. II
-
1
-
Shu, C.-W., Osher, S.: Efficient implementation of essentially nonoscillatory shock-capturing schemes. II. J. Comput. Phys. 83(1), 32-78 (1989)
-
(1989)
J. Comput. Phys.
, vol.83
, pp. 32-78
-
-
Shu, C.-W.1
Osher, S.2
-
31
-
-
33845599106
-
Two methods for discretizing a delta function supported on a level set
-
2
-
Towers, J.: Two methods for discretizing a delta function supported on a level set. J. Comput. Phys. 220(2), 915-931 (2007)
-
(2007)
J. Comput. Phys.
, vol.220
, pp. 915-931
-
-
Towers, J.1
|