메뉴 건너뛰기




Volumn 3, Issue , 2007, Pages 295-305

Comparison of supervised classification methods for protein profiling in cancer diagnosis

Author keywords

Logistic regression; Mass spectrometry; Supervised classifications; Wilcoxon's test

Indexed keywords

BIOLOGICAL MARKER; PROTEIN;

EID: 49649120125     PISSN: 11769351     EISSN: 11769351     Source Type: Journal    
DOI: 10.1177/117693510700300023     Document Type: Article
Times cited : (8)

References (23)
  • 1
    • 0036645099 scopus 로고    scopus 로고
    • Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men
    • Adam, B.L., Qu, Y., Davis, J.W. et al. 2002. Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res., 62:3609-14.
    • (2002) Cancer Res , vol.62 , pp. 3609-3614
    • Adam, B.L.1    Qu, Y.2    Davis, J.W.3
  • 2
    • 0037076322 scopus 로고    scopus 로고
    • Selection bias in gene extraction on the basis of microarray gene-expression data
    • Ambroise, C. and McLachlan, G.J. 2002. Selection bias in gene extraction on the basis of microarray gene-expression data. Proc. Natl. Acad. Sci. U.S.A., 99(10):6562-6.
    • (2002) Proc. Natl. Acad. Sci. U.S.A , vol.99 , Issue.10 , pp. 6562-6566
    • Ambroise, C.1    McLachlan, G.J.2
  • 3
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • Bauer, E. and Kohavi, R. 1999. An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Machine Learning, 36:105-39.
    • (1999) Machine Learning , vol.36 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 4
    • 0001677717 scopus 로고
    • Controlling the false discovery rate - a pratical and powerful approach to multiple testing
    • Benjamini, Y. and Hochberg, Y. 1995. Controlling the false discovery rate - a pratical and powerful approach to multiple testing. J.R. Stat. Soc. B.57:289-300.
    • (1995) J.R. Stat. Soc. B , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 5
    • 11144233952 scopus 로고    scopus 로고
    • Artificial neural networks analysis of surface-enhanced laser desorption/ionization mass spectra of serum protein pattern distinguishes colorectal cancer from healthy population
    • Chen, Y.-D., Zheng, S., Yu J.-K. et al. 2004. Artificial neural networks analysis of surface-enhanced laser desorption/ionization mass spectra of serum protein pattern distinguishes colorectal cancer from healthy population. Clin. Cancer Res., 10(04):8380-5.
    • (2004) Clin. Cancer Res , vol.10 , Issue.4 , pp. 8380-8385
    • Chen, Y.-D.1    Zheng, S.2    Yu, J.-K.3
  • 8
    • 33747432967 scopus 로고    scopus 로고
    • Identification of biomarkers from mass spectrometry data using a "common" peak approach
    • Fushiki T., Fujisawa H., Eguchi S. 2006. Identification of biomarkers from mass spectrometry data using a "common" peak approach. B.M.C. Bioinformatics, 7:358.
    • (2006) B.M.C. Bioinformatics , vol.7 , pp. 358
    • Fushiki, T.1    Fujisawa, H.2    Eguchi, S.3
  • 11
    • 49649114242 scopus 로고    scopus 로고
    • Lee, M.-L, T. 2004. Analysis of Microarray Gene Expression Data. Boston: Kluwer Academic Publishers.
    • Lee, M.-L, T. 2004. Analysis of Microarray Gene Expression Data. Boston: Kluwer Academic Publishers.
  • 12
    • 4444234496 scopus 로고    scopus 로고
    • Data mining techniques for cancer detection using serum proteomic profiling
    • Li L., Tang, H., Wu, Z., Gong, J. et al. 2004. Data mining techniques for cancer detection using serum proteomic profiling. Artif. Intell. Med., 32(2):71-83.
    • (2004) Artif. Intell. Med , vol.32 , Issue.2 , pp. 71-83
    • Li, L.1    Tang, H.2    Wu, Z.3    Gong, J.4
  • 14
    • 33645072705 scopus 로고    scopus 로고
    • Combining predictors for classification using the area under the receiver operating characteristic curve
    • Pepe, M.S., Cai, T. and Longton, G. 2006. Combining predictors for classification using the area under the receiver operating characteristic curve. Biometrics, 62(1):221-9.
    • (2006) Biometrics , vol.62 , Issue.1 , pp. 221-229
    • Pepe, M.S.1    Cai, T.2    Longton, G.3
  • 15
    • 0037116832 scopus 로고    scopus 로고
    • Use of proteomic patterns in serum to identify ovarian cancer
    • Petricoin, E.F., Ardekani, A.M., Hitt, B.A. et al. 2002. Use of proteomic patterns in serum to identify ovarian cancer. Lancet, 359:572-7.
    • (2002) Lancet , vol.359 , pp. 572-577
    • Petricoin, E.F.1    Ardekani, A.M.2    Hitt, B.A.3
  • 16
    • 33745565779 scopus 로고    scopus 로고
    • Solassol, J., Jacot, W., Lhermitte, L. et al. 2006. Clinical proteomics and mass spectrometry profiling for cancer detection. Expert Rev. Proteomics, 3:311-20.
    • Solassol, J., Jacot, W., Lhermitte, L. et al. 2006. Clinical proteomics and mass spectrometry profiling for cancer detection. Expert Rev. Proteomics, 3:311-20.
  • 18
    • 0942265518 scopus 로고    scopus 로고
    • Diagnosis of ovarian cancer using decision tree classification of mass spectral data
    • Vlahou, A., Schorge, J.O., Gregory, B.W. et al. 2003. Diagnosis of ovarian cancer using decision tree classification of mass spectral data. J. Biomed. Biotechnolo., 5:308-14.
    • (2003) J. Biomed. Biotechnolo , vol.5 , pp. 308-314
    • Vlahou, A.1    Schorge, J.O.2    Gregory, B.W.3
  • 19
    • 14844299375 scopus 로고    scopus 로고
    • Implementing false discovery rate control: Increasing your power
    • Verhoeven, K.J.F., Simonsen, K.L. and McIntyre, L.M. 2005. Implementing false discovery rate control: increasing your power. Oikos, 108(3):643-47.
    • (2005) Oikos , vol.108 , Issue.3 , pp. 643-647
    • Verhoeven, K.J.F.1    Simonsen, K.L.2    McIntyre, L.M.3
  • 21
    • 0141738784 scopus 로고    scopus 로고
    • Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data
    • Wu, B., Abbott, T., Fishman, D. et al. 2003. Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data. Bioinformatics, 19(13):1636-43.
    • (2003) Bioinformatics , vol.19 , Issue.13 , pp. 1636-1643
    • Wu, B.1    Abbott, T.2    Fishman, D.3
  • 22
    • 26844465463 scopus 로고    scopus 로고
    • Application of serum SELDI proteomic patterns in diagnosis of lung cancer
    • Yang, S.-Y., Xiao, X.-Y. and Zhang, W.-G. 2005. Application of serum SELDI proteomic patterns in diagnosis of lung cancer. BMC cancer, 5:83.
    • (2005) BMC cancer , vol.5 , pp. 83
    • Yang, S.-Y.1    Xiao, X.-Y.2    Zhang, W.-G.3
  • 23
    • 4143067096 scopus 로고    scopus 로고
    • Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer
    • Zhang, Z., Bast, R.C. Jr., Yu, Y. et al. 2004. Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer. Cancer Res., 64:5882-90.
    • (2004) Cancer Res , vol.64 , pp. 5882-5890
    • Zhang, Z.1    Bast Jr., R.C.2    Yu, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.