메뉴 건너뛰기




Volumn 78, Issue 5, 2008, Pages

Extraordinary optical transmission through a random array of subwavelength holes

Author keywords

[No Author keywords available]

Indexed keywords


EID: 49649110093     PISSN: 10980121     EISSN: 1550235X     Source Type: Journal    
DOI: 10.1103/PhysRevB.78.054201     Document Type: Article
Times cited : (6)

References (37)
  • 4
    • 0034296247 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.85.3966
    • J. B. Pendry, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.85. 3966 85, 3966 (2000).
    • (2000) Phys. Rev. Lett. , vol.85 , pp. 3966
    • Pendry, J.B.1
  • 5
    • 1642601549 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.92.077401
    • A. N. Lagarkov and V. N. Kissel, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.92.077401 92, 077401 (2004).
    • (2004) Phys. Rev. Lett. , vol.92 , pp. 077401
    • Lagarkov, A.N.1    Kissel, V.N.2
  • 6
    • 34047104373 scopus 로고    scopus 로고
    • SCIEAS 0036-8075 10.1126/science.1137368
    • Z. Liu, H. Lee, Yi Xiong, C. Sun, and X. Zhang, Science SCIEAS 0036-8075 10.1126/science.1137368 315, 1686 (2007).
    • (2007) Science , vol.315 , pp. 1686
    • Liu, Z.1    Lee, H.2    Xiong, Y.3    Sun, C.4    Zhang, X.5
  • 10
    • 4243725065 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.77.1163
    • F. J. Garcia-Vidal and J. B. Pendry, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.77.1163 77, 1163 (1996).
    • (1996) Phys. Rev. Lett. , vol.77 , pp. 1163
    • Garcia-Vidal, F.J.1    Pendry, J.B.2
  • 12
    • 35548994619 scopus 로고    scopus 로고
    • RMPHAT 0034-6861 10.1103/RevModPhys.79.1267
    • F. J. Garcia de Abajo, Rev. Mod. Phys. RMPHAT 0034-6861 10.1103/RevModPhys.79.1267 79, 1267 (2007).
    • (2007) Rev. Mod. Phys. , vol.79 , pp. 1267
    • Garcia De Abajo, F.J.1
  • 14
    • 0000309715 scopus 로고    scopus 로고
    • PRBMDO 0163-1829 10.1103/PhysRevB.58.6920
    • H. Miyazaki and K. Ohtaka, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.58.6920 58, 6920 (1998).
    • (1998) Phys. Rev. B , vol.58 , pp. 6920
    • Miyazaki, H.1    Ohtaka, K.2
  • 16
    • 33644933194 scopus 로고    scopus 로고
    • PRBMDO 0163-1829 10.1103/PhysRevB.72.085122
    • J. Chaloupka, J. Zarbakhsh, and K. Hingerl, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.72.085122 72, 085122 (2005).
    • (2005) Phys. Rev. B , vol.72 , pp. 085122
    • Chaloupka, J.1    Zarbakhsh, J.2    Hingerl, K.3
  • 19
    • 33745048690 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.96.233901
    • Zh. Ruan and M. Qiu, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.96.233901 96, 233901 (2006).
    • (2006) Phys. Rev. Lett. , vol.96 , pp. 233901
    • Ruan, Zh.1    Qiu, M.2
  • 23
  • 25
    • 49649083713 scopus 로고    scopus 로고
    • As seen in Fig. 3 the intensity of all characteristic peaks decrease by the same value.
    • As seen in Fig. 3 the intensity of all characteristic peaks decrease by the same value.
  • 26
    • 49649108965 scopus 로고    scopus 로고
    • Λ01 =2897c m-1, Λ02 =2963c m-1, Λ03 =3065c m-1, Λ04 =3422c m-1, γ1 =7.96c m-1, γ2 =15.92c m-1, γ3 =20.69c m-1, γ4 =12.73c m-1, f1 =648c m-2, f2 =2928c m-2, f3 =1226c m-2, f4 =1340c m-2.
    • Λ01 =2897c m-1, Λ02 =2963c m-1, Λ03 =3065c m-1, Λ04 =3422c m-1, γ1 =7.96c m-1, γ2 =15.92c m-1, γ3 =20.69c m-1, γ4 =12.73c m-1, f1 =648c m-2, f2 =2928c m-2, f3 =1226c m-2, f4 =1340c m-2.
  • 28
    • 36149016205 scopus 로고
    • PHRVAO 0031-899X 10.1103/PhysRev.66.163
    • H. A. Bethe, Phys. Rev. PHRVAO 0031-899X 10.1103/PhysRev.66.163 66, 163 (1944).
    • (1944) Phys. Rev. , vol.66 , pp. 163
    • Bethe, H.A.1
  • 29
    • 49649086822 scopus 로고    scopus 로고
    • Note that interference pulsing of the transmittance can be related only to the imaginary part of permittivity if the real part is negative (Ref.). Since the thickness and tangent of losses of the silver film are small we do not observe in the investigated frequency range any influence of transmittance interference.
    • Note that interference pulsing of the transmittance can be related only to the imaginary part of permittivity if the real part is negative (Ref.). Since the thickness and tangent of losses of the silver film are small we do not observe in the investigated frequency range any influence of transmittance interference.
  • 30
    • 27744508577 scopus 로고    scopus 로고
    • OPCOB8 0030-4018 10.1016/j.optcom.2005.06.075
    • A. P. Vinogradov and A. V. Dorofeenko, Opt. Commun. OPCOB8 0030-4018 10.1016/j.optcom.2005.06.075 256, 333 (2005).
    • (2005) Opt. Commun. , vol.256 , pp. 333
    • Vinogradov, A.P.1    Dorofeenko, A.V.2
  • 33
    • 49649114927 scopus 로고    scopus 로고
    • From percolation theory it is well known that in a random system a cluster contains on average 2-3 particles (Ref.). The diameter of a triple-hole cluster is a3 =a(1+2/3)2.1547. Supposing that all the holes are concentrated in triple-hole clusters we arrive at the following upper estimation of the magnetic current jM = M ∼ c (k a3) n3 a32 Hi where n3 is the density of triple-hole cluster with n3 a32 =α~0.1. Thus, at a fixed relative area occupied with holes the magnetic current increases linearly with the diameter of a hole whereas the transmittance coefficient does it quadratic. The clusterization of the holes may increase the transmittance coefficient by a factor of 4.6 and cannot explain the experimental results. Computer simulation of transmittance trough a perfectly conducting screen with a single hole and with three-holes cluster shows in the latter case a fourfold rise of the transmittance in agreement with our analytical estimation.
    • From percolation theory it is well known that in a random system a cluster contains on average 2-3 particles (Ref.). The diameter of a triple-hole cluster is a3 =a(1+2/3)2.1547. Supposing that all the holes are concentrated in triple-hole clusters we arrive at the following upper estimation of the magnetic current jM = M ∼ c (k a3) n3 a32 Hi where n3 is the density of triple-hole cluster with n3 a32 =α~0.1. Thus, at a fixed relative area occupied with holes the magnetic current increases linearly with the diameter of a hole whereas the transmittance coefficient does it quadratic. The clusterization of the holes may increase the transmittance coefficient by a factor of 4.6 and cannot explain the experimental results. Computer simulation of transmittance trough a perfectly conducting screen with a single hole and with three-holes cluster shows in the latter case a fourfold rise of the transmittance in agreement with our analytical estimation.
  • 35
    • 49649101451 scopus 로고    scopus 로고
    • At a normal incidence impedance is Z TE -1 =i |ε|, which provides the impedance contrast and causes reflection.
    • At a normal incidence impedance is Z TE -1 =i |ε|, which provides the impedance contrast and causes reflection.
  • 36
    • 49649117378 scopus 로고    scopus 로고
    • At |ε|>>1 from the condition of surface-plasmon excitation kt2 - k02 = kt2 +|ε| k02 / |ε| one can derive kt k0 (1+ 1/ 2ε). In Fig. 7 the plasmon resonance is revealed as a peak of TM-polarized inhomogeneous wave transmission.
    • At |ε|>>1 from the condition of surface-plasmon excitation kt2 - k02 = kt2 +|ε| k02 / |ε| one can derive kt k0 (1+ 1/ 2ε). In Fig. 7 the plasmon resonance is revealed as a peak of TM-polarized inhomogeneous wave transmission.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.