-
1
-
-
33947664467
-
-
RPPHAG 0034-4885 10.1088/0034-4885/70/1/R01
-
J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, Rep. Prog. Phys. RPPHAG 0034-4885 10.1088/0034-4885/70/1/R01 70, 1 (2007).
-
(2007)
Rep. Prog. Phys.
, vol.70
, pp. 1
-
-
Pitarke, J.M.1
Silkin, V.M.2
Chulkov, E.V.3
Echenique, P.M.4
-
4
-
-
0034296247
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.85.3966
-
J. B. Pendry, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.85. 3966 85, 3966 (2000).
-
(2000)
Phys. Rev. Lett.
, vol.85
, pp. 3966
-
-
Pendry, J.B.1
-
5
-
-
1642601549
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.92.077401
-
A. N. Lagarkov and V. N. Kissel, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.92.077401 92, 077401 (2004).
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 077401
-
-
Lagarkov, A.N.1
Kissel, V.N.2
-
6
-
-
34047104373
-
-
SCIEAS 0036-8075 10.1126/science.1137368
-
Z. Liu, H. Lee, Yi Xiong, C. Sun, and X. Zhang, Science SCIEAS 0036-8075 10.1126/science.1137368 315, 1686 (2007).
-
(2007)
Science
, vol.315
, pp. 1686
-
-
Liu, Z.1
Lee, H.2
Xiong, Y.3
Sun, C.4
Zhang, X.5
-
7
-
-
33144482162
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.73.035409
-
G. Fedorov, S. I. Maslovski, A. V. Dorofeenko, A. P. Vinogradov, I. A. Ryzhikov, and S. A. Tretyakov, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.73.035409 73, 035409 (2006).
-
(2006)
Phys. Rev. B
, vol.73
, pp. 035409
-
-
Fedorov, G.1
Maslovski, S.I.2
Dorofeenko, A.V.3
Vinogradov, A.P.4
Ryzhikov, I.A.5
Tretyakov, S.A.6
-
9
-
-
0032510134
-
-
NATUAS 0028-0836 10.1038/35570
-
T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature (London) NATUAS 0028-0836 10.1038/35570 391, 667 (1998).
-
(1998)
Nature (London)
, vol.391
, pp. 667
-
-
Ebbesen, T.W.1
Lezec, H.J.2
Ghaemi, H.F.3
Thio, T.4
Wolff, P.A.5
-
10
-
-
4243725065
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.77.1163
-
F. J. Garcia-Vidal and J. B. Pendry, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.77.1163 77, 1163 (1996).
-
(1996)
Phys. Rev. Lett.
, vol.77
, pp. 1163
-
-
Garcia-Vidal, F.J.1
Pendry, J.B.2
-
11
-
-
0035251449
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.86.1114
-
L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.86.1114 86, 1114 (2001).
-
(2001)
Phys. Rev. Lett.
, vol.86
, pp. 1114
-
-
Martin-Moreno, L.1
Garcia-Vidal, F.J.2
Lezec, H.J.3
Pellerin, K.M.4
Thio, T.5
Pendry, J.B.6
Ebbesen, T.W.7
-
12
-
-
35548994619
-
-
RMPHAT 0034-6861 10.1103/RevModPhys.79.1267
-
F. J. Garcia de Abajo, Rev. Mod. Phys. RMPHAT 0034-6861 10.1103/RevModPhys.79.1267 79, 1267 (2007).
-
(2007)
Rev. Mod. Phys.
, vol.79
, pp. 1267
-
-
Garcia De Abajo, F.J.1
-
14
-
-
0000309715
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.58.6920
-
H. Miyazaki and K. Ohtaka, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.58.6920 58, 6920 (1998).
-
(1998)
Phys. Rev. B
, vol.58
, pp. 6920
-
-
Miyazaki, H.1
Ohtaka, K.2
-
15
-
-
0038540614
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.90.167401
-
L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.90.167401 90, 167401 (2003).
-
(2003)
Phys. Rev. Lett.
, vol.90
, pp. 167401
-
-
Martin-Moreno, L.1
Garcia-Vidal, F.J.2
Lezec, H.J.3
Degiron, A.4
Ebbesen, T.W.5
-
16
-
-
33644933194
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.72.085122
-
J. Chaloupka, J. Zarbakhsh, and K. Hingerl, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.72.085122 72, 085122 (2005).
-
(2005)
Phys. Rev. B
, vol.72
, pp. 085122
-
-
Chaloupka, J.1
Zarbakhsh, J.2
Hingerl, K.3
-
17
-
-
27144454020
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.95.103901
-
F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.95.103901 95, 103901 (2005)
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 103901
-
-
Garcia-Vidal, F.J.1
Moreno, E.2
Porto, J.A.3
Martin-Moreno, L.4
-
18
-
-
36248994799
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.99.203905
-
J. Bravo-Abad, A. I. Fernandez-DomInguez, F. J. Garcia-Vidal, and L. Martin-Moreno, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.99.203905 99, 203905 (2007).
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 203905
-
-
Bravo-Abad, J.1
Fernandez-Dominguez, A.I.2
Garcia-Vidal, F.J.3
Martin-Moreno, L.4
-
19
-
-
33745048690
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.96.233901
-
Zh. Ruan and M. Qiu, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.96.233901 96, 233901 (2006).
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 233901
-
-
Ruan, Zh.1
Qiu, M.2
-
20
-
-
34047123671
-
-
NATUAS 0028-0836 10.1038/nature05620
-
T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, Nature (London) NATUAS 0028-0836 10.1038/nature05620 446, 517 (2007).
-
(2007)
Nature (London)
, vol.446
, pp. 517
-
-
Matsui, T.1
Agrawal, A.2
Nahata, A.3
Vardeny, Z.V.4
-
21
-
-
34748828157
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.99.137401
-
J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, D. S. Kim, and S. C. Jeoung, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.99.137401 99, 137401 (2007).
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 137401
-
-
Lee, J.W.1
Seo, M.A.2
Kang, D.H.3
Khim, K.S.4
Kim, D.S.5
Jeoung, S.C.6
-
22
-
-
33748922969
-
-
TEPHEX 1063-7842 10.1134/S1063784206090209
-
A. V. Mitrofanov, P. Yu. Apel, I. V. Blonskaya, and O. L. Orelovich, Tech. Phys. TEPHEX 1063-7842 10.1134/S1063784206090209 51, 1229 (2006).
-
(2006)
Tech. Phys.
, vol.51
, pp. 1229
-
-
Mitrofanov, A.V.1
Yu. Apel, P.2
Blonskaya, I.V.3
Orelovich, O.L.4
-
23
-
-
0004106794
-
-
3rd ed. (Dover, New York
-
R. W. Wood, Physical Optics, 3rd ed. (Dover, New York, 1967)
-
(1967)
Physical Optics
-
-
Wood, R.W.1
-
25
-
-
49649083713
-
-
As seen in Fig. 3 the intensity of all characteristic peaks decrease by the same value.
-
As seen in Fig. 3 the intensity of all characteristic peaks decrease by the same value.
-
-
-
-
26
-
-
49649108965
-
-
Λ01 =2897c m-1, Λ02 =2963c m-1, Λ03 =3065c m-1, Λ04 =3422c m-1, γ1 =7.96c m-1, γ2 =15.92c m-1, γ3 =20.69c m-1, γ4 =12.73c m-1, f1 =648c m-2, f2 =2928c m-2, f3 =1226c m-2, f4 =1340c m-2.
-
Λ01 =2897c m-1, Λ02 =2963c m-1, Λ03 =3065c m-1, Λ04 =3422c m-1, γ1 =7.96c m-1, γ2 =15.92c m-1, γ3 =20.69c m-1, γ4 =12.73c m-1, f1 =648c m-2, f2 =2928c m-2, f3 =1226c m-2, f4 =1340c m-2.
-
-
-
-
28
-
-
36149016205
-
-
PHRVAO 0031-899X 10.1103/PhysRev.66.163
-
H. A. Bethe, Phys. Rev. PHRVAO 0031-899X 10.1103/PhysRev.66.163 66, 163 (1944).
-
(1944)
Phys. Rev.
, vol.66
, pp. 163
-
-
Bethe, H.A.1
-
29
-
-
49649086822
-
-
Note that interference pulsing of the transmittance can be related only to the imaginary part of permittivity if the real part is negative (Ref.). Since the thickness and tangent of losses of the silver film are small we do not observe in the investigated frequency range any influence of transmittance interference.
-
Note that interference pulsing of the transmittance can be related only to the imaginary part of permittivity if the real part is negative (Ref.). Since the thickness and tangent of losses of the silver film are small we do not observe in the investigated frequency range any influence of transmittance interference.
-
-
-
-
30
-
-
27744508577
-
-
OPCOB8 0030-4018 10.1016/j.optcom.2005.06.075
-
A. P. Vinogradov and A. V. Dorofeenko, Opt. Commun. OPCOB8 0030-4018 10.1016/j.optcom.2005.06.075 256, 333 (2005).
-
(2005)
Opt. Commun.
, vol.256
, pp. 333
-
-
Vinogradov, A.P.1
Dorofeenko, A.V.2
-
33
-
-
49649114927
-
-
From percolation theory it is well known that in a random system a cluster contains on average 2-3 particles (Ref.). The diameter of a triple-hole cluster is a3 =a(1+2/3)2.1547. Supposing that all the holes are concentrated in triple-hole clusters we arrive at the following upper estimation of the magnetic current jM = M ∼ c (k a3) n3 a32 Hi where n3 is the density of triple-hole cluster with n3 a32 =α~0.1. Thus, at a fixed relative area occupied with holes the magnetic current increases linearly with the diameter of a hole whereas the transmittance coefficient does it quadratic. The clusterization of the holes may increase the transmittance coefficient by a factor of 4.6 and cannot explain the experimental results. Computer simulation of transmittance trough a perfectly conducting screen with a single hole and with three-holes cluster shows in the latter case a fourfold rise of the transmittance in agreement with our analytical estimation.
-
From percolation theory it is well known that in a random system a cluster contains on average 2-3 particles (Ref.). The diameter of a triple-hole cluster is a3 =a(1+2/3)2.1547. Supposing that all the holes are concentrated in triple-hole clusters we arrive at the following upper estimation of the magnetic current jM = M ∼ c (k a3) n3 a32 Hi where n3 is the density of triple-hole cluster with n3 a32 =α~0.1. Thus, at a fixed relative area occupied with holes the magnetic current increases linearly with the diameter of a hole whereas the transmittance coefficient does it quadratic. The clusterization of the holes may increase the transmittance coefficient by a factor of 4.6 and cannot explain the experimental results. Computer simulation of transmittance trough a perfectly conducting screen with a single hole and with three-holes cluster shows in the latter case a fourfold rise of the transmittance in agreement with our analytical estimation.
-
-
-
-
35
-
-
49649101451
-
-
At a normal incidence impedance is Z TE -1 =i |ε|, which provides the impedance contrast and causes reflection.
-
At a normal incidence impedance is Z TE -1 =i |ε|, which provides the impedance contrast and causes reflection.
-
-
-
-
36
-
-
49649117378
-
-
At |ε|>>1 from the condition of surface-plasmon excitation kt2 - k02 = kt2 +|ε| k02 / |ε| one can derive kt k0 (1+ 1/ 2ε). In Fig. 7 the plasmon resonance is revealed as a peak of TM-polarized inhomogeneous wave transmission.
-
At |ε|>>1 from the condition of surface-plasmon excitation kt2 - k02 = kt2 +|ε| k02 / |ε| one can derive kt k0 (1+ 1/ 2ε). In Fig. 7 the plasmon resonance is revealed as a peak of TM-polarized inhomogeneous wave transmission.
-
-
-
|