-
1
-
-
0036769434
-
-
AICEAC 0001-1541 10.1002/aic.690480902
-
O. A. Basaran, AIChE J. AICEAC 0001-1541 10.1002/aic.690480902 48, 1842 (2002).
-
(2002)
AIChE J.
, vol.48
, pp. 1842
-
-
Basaran, O.A.1
-
2
-
-
33846598444
-
-
PHRVAO 0031-899X 10.1103/PhysRev.10.1
-
J. Zeleny, Phys. Rev. PHRVAO 0031-899X 10.1103/PhysRev.10.1 10, 1 (1917).
-
(1917)
Phys. Rev.
, vol.10
, pp. 1
-
-
Zeleny, J.1
-
4
-
-
34047187372
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.98.134503
-
A. M. Gañán-Calvo, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.98.134503 98, 134503 (2007).
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 134503
-
-
Gañán-Calvo, A.M.1
-
5
-
-
3242662504
-
-
PHFLE6 1070-6631 10.1063/1.1739231
-
J. M. Fernandez and G. M. Homsy, Phys. Fluids PHFLE6 1070-6631 10.1063/1.1739231 16, 2548 (2004).
-
(2004)
Phys. Fluids
, vol.16
, pp. 2548
-
-
Fernandez, J.M.1
Homsy, G.M.2
-
6
-
-
0037527919
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.90.144503
-
A. Casner and J.-P. Delville, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.90.144503 90, 144503 (2003).
-
(2003)
Phys. Rev. Lett.
, vol.90
, pp. 144503
-
-
Casner, A.1
Delville, J.-P.2
-
10
-
-
34548590903
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.99.104502
-
P. Guillot, A. Colin, A. S. Utada, and A. Ajdari, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.99.104502 99, 104502 (2007).
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 104502
-
-
Guillot, P.1
Colin, A.2
Utada, A.S.3
Ajdari, A.4
-
11
-
-
0000770688
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.80.285
-
A. M. Gañán-Calvo, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.80.285 80, 285 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.80
, pp. 285
-
-
Gañán-Calvo, A.M.1
-
13
-
-
33847670052
-
-
PLEEE8 1063-651X 10.1103/PhysRevE.75.027301
-
A. M. Gañán-Calvo, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.75.027301 75, 027301 (2007).
-
(2007)
Phys. Rev. e
, vol.75
, pp. 027301
-
-
Gañán-Calvo, A.M.1
-
14
-
-
34848813914
-
-
ZZZZZZ 1745-2473
-
A. M. Gañán-Calvo, R. González-Prieto, P. Riesco-Chueca, M. A. Herrada, and M. Flores-Mosquera, Nat. Phys. ZZZZZZ 1745-2473 3, 737 (2007).
-
(2007)
Nat. Phys.
, vol.3
, pp. 737
-
-
Gañán-Calvo, A.M.1
González-Prieto, R.2
Riesco-Chueca, P.3
Herrada, M.A.4
Flores-Mosquera, M.5
-
16
-
-
33748280664
-
-
PHFLE6 1070-6631 10.1063/1.2335621
-
R. Suryo and O. A. Basaran, Phys. Fluids PHFLE6 1070-6631 10.1063/1.2335621 18, 082102 (2006).
-
(2006)
Phys. Fluids
, vol.18
, pp. 082102
-
-
Suryo, R.1
Basaran, O.A.2
-
17
-
-
32644476669
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.96.034501
-
S. Courrech du Pont and J. Eggers, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.96.034501 96, 034501 (2006).
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 034501
-
-
Courrech Du Pont, S.1
Eggers, J.2
-
18
-
-
33846084175
-
-
PHFLE6 1070-6631 10.1063/1.2397023
-
S. L. Anna and H. C. Mayer, Phys. Fluids PHFLE6 1070-6631 10.1063/1.2397023 18, 121512 (2006).
-
(2006)
Phys. Fluids
, vol.18
, pp. 121512
-
-
Anna, S.L.1
Mayer, H.C.2
-
19
-
-
0011938029
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.78.2555
-
T. R. Powers and R. E. Goldstein, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.78.2555 78, 2555 (1997).
-
(1997)
Phys. Rev. Lett.
, vol.78
, pp. 2555
-
-
Powers, T.R.1
Goldstein, R.E.2
-
20
-
-
3743079140
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.37.211
-
W. van Saarlos, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.37.211 37, 211 (1988).
-
(1988)
Phys. Rev. A
, vol.37
, pp. 211
-
-
Van Saarlos, W.1
-
21
-
-
0000612887
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.50.383
-
G. Dee and J. S. Langer, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.50.383 50, 383 (1983).
-
(1983)
Phys. Rev. Lett.
, vol.50
, pp. 383
-
-
Dee, G.1
Langer, J.S.2
-
22
-
-
0000657838
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.58.2571
-
W. van Saarlos, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.58. 2571 58, 2571 (1987).
-
(1987)
Phys. Rev. Lett.
, vol.58
, pp. 2571
-
-
Van Saarlos, W.1
-
24
-
-
34548274013
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.99.094502
-
A. S. Utada, A. Fernández-Nieves, H. A. Stone, and D. A. Weitz, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.99.094502 99, 094502 (2007).
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 094502
-
-
Utada, A.S.1
Fernández-Nieves, A.2
Stone, H.A.3
Weitz, D.A.4
-
26
-
-
18544400397
-
-
EPJBFY 1434-6028 10.1140/epjb/e2004-00365-8
-
A. M. Gañán-Calvo, M. Pérez-Saborid, J. M. López-Herrera, and J. M. Gordillo, Eur. Phys. J. B EPJBFY 1434-6028 10.1140/epjb/e2004-00365-8 39, 131 (2004).
-
(2004)
Eur. Phys. J. B
, vol.39
, pp. 131
-
-
Gañán-Calvo, A.M.1
Pérez-Saborid, M.2
López-Herrera, J.M.3
Gordillo, J.M.4
-
27
-
-
49549114349
-
-
S. Anna (private communication).
-
-
-
Anna, S.1
-
28
-
-
41949096066
-
-
PLEEE8 1063-651X 10.1103/PhysRevE.77.046301
-
J. M. Montanero and A. M. Gañán-Calvo, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.77.046301 77, 046301 (2008).
-
(2008)
Phys. Rev. e
, vol.77
, pp. 046301
-
-
Montanero, J.M.1
Gañán-Calvo, A.M.2
-
29
-
-
19744382230
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.93.184502
-
W. W. Zhang, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.93. 184502 93, 184502 (2004).
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 184502
-
-
Zhang, W.W.1
-
30
-
-
49549116070
-
-
The complex equation 13 provides six scalar equations from its real and imaginary terms of order O (1), O (U), and O (U2). Conditions for v-* =0 provide three scalar equations resulting in Im (ω0) =0, Re (ω1) =0, and Im (ω1) =0.
-
The complex equation 13 provides six scalar equations from its real and imaginary terms of order O (1), O (U), and O (U2). Conditions for v-* =0 provide three scalar equations resulting in Im (ω0) =0, Re (ω1) =0, and Im (ω1) =0.
-
-
-
-
31
-
-
49549115415
-
-
In the viscosity-dominated flow, the perturbed equations for both the pressure and the velocity are independent of the steady, first-order velocities (the convective term, the one responsible for a possible coupling between first order and perturbation, is absent). In the inertia-dominated flow considered here, since the basic velocity profiles are homogeneous, they enter the analysis only through the constant parameter U= U2/U1.
-
In the viscosity-dominated flow, the perturbed equations for both the pressure and the velocity are independent of the steady, first-order velocities (the convective term, the one responsible for a possible coupling between first order and perturbation, is absent). In the inertia-dominated flow considered here, since the basic velocity profiles are homogeneous, they enter the analysis only through the constant parameter U= U2/U1.
-
-
-
|