메뉴 건너뛰기




Volumn 41, Issue 12, 2008, Pages 3813-3821

Locally linear discriminant embedding: An efficient method for face recognition

Author keywords

Dimensionality reduction; Face recognition; Feature extraction; Locally linear embedding; Manifold learning

Indexed keywords

CHLORINE COMPOUNDS; DISCRIMINANT ANALYSIS; FEATURE EXTRACTION; IMAGE RETRIEVAL; KETONES; LABELING; LABELS; METALLIC MATRIX COMPOSITES; TRANSLATION (LANGUAGES); VECTORS;

EID: 49449095973     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2008.05.027     Document Type: Article
Times cited : (238)

References (43)
  • 2
    • 0001065110 scopus 로고    scopus 로고
    • Discriminant analysis for recognition of human face images
    • Etemad K., and Chellapa R. Discriminant analysis for recognition of human face images. J. Opt. Am. A 14 8 (1997) 1724-1733
    • (1997) J. Opt. Am. A , vol.14 , Issue.8 , pp. 1724-1733
    • Etemad, K.1    Chellapa, R.2
  • 4
    • 27744565938 scopus 로고    scopus 로고
    • Solving the small sample size problem in face recognition using generalized discriminant analysis
    • Howland P., Wang J., and Park H. Solving the small sample size problem in face recognition using generalized discriminant analysis. Pattern Recognition 39 (2006) 277-287
    • (2006) Pattern Recognition , vol.39 , pp. 277-287
    • Howland, P.1    Wang, J.2    Park, H.3
  • 5
    • 13844299267 scopus 로고    scopus 로고
    • Foley-Sammon optimal discriminant vectors using kernel approach
    • Zheng W., Zhao L., and Zou C. Foley-Sammon optimal discriminant vectors using kernel approach. IEEE Trans. Neural Networks 16 1 (2005) 1-9
    • (2005) IEEE Trans. Neural Networks , vol.16 , Issue.1 , pp. 1-9
    • Zheng, W.1    Zhao, L.2    Zou, C.3
  • 6
    • 1842812871 scopus 로고    scopus 로고
    • An efficient algorithm to solve the small sample size problem for LDA
    • Zheng W., Zhao L., and Zou C. An efficient algorithm to solve the small sample size problem for LDA. Pattern Recognition 37 (2004) 1077-1079
    • (2004) Pattern Recognition , vol.37 , pp. 1077-1079
    • Zheng, W.1    Zhao, L.2    Zou, C.3
  • 7
    • 84887916087 scopus 로고
    • Regularized discriminant analysis
    • Friedman J.H. Regularized discriminant analysis. J. Am. Statist. Assoc. 84 405 (1989) 165-175
    • (1989) J. Am. Statist. Assoc. , vol.84 , Issue.405 , pp. 165-175
    • Friedman, J.H.1
  • 10
    • 0030214923 scopus 로고    scopus 로고
    • Using discriminant eigenfeatures for image retrieval
    • Swets D.L., and Weng J. Using discriminant eigenfeatures for image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 18 8 (1996) 831-836
    • (1996) IEEE Trans. Pattern Anal. Mach. Intell. , vol.18 , Issue.8 , pp. 831-836
    • Swets, D.L.1    Weng, J.2
  • 11
    • 1342310014 scopus 로고    scopus 로고
    • Structure preserving dimension reduction for clustered text data based on the generalized singular value decomposition
    • Howland P., Jeon M., and Park H. Structure preserving dimension reduction for clustered text data based on the generalized singular value decomposition. SIAM J. Matrix Anal. Appl. 25 1 (2003) 165-179
    • (2003) SIAM J. Matrix Anal. Appl. , vol.25 , Issue.1 , pp. 165-179
    • Howland, P.1    Jeon, M.2    Park, H.3
  • 12
    • 3242767684 scopus 로고    scopus 로고
    • An optimization criterion for generalized discriminant analysis on undersampled problems
    • Ye J., Janardan R., Park C.H., and Park H. An optimization criterion for generalized discriminant analysis on undersampled problems. IEEE Trans. Pattern Anal. Mach. Intell. 26 8 (2004) 982-994
    • (2004) IEEE Trans. Pattern Anal. Mach. Intell. , vol.26 , Issue.8 , pp. 982-994
    • Ye, J.1    Janardan, R.2    Park, C.H.3    Park, H.4
  • 13
    • 21244494853 scopus 로고    scopus 로고
    • A two-stage linear discriminant analysis via QR-decomposition
    • Ye J., and Li Q. A two-stage linear discriminant analysis via QR-decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 27 6 (2005) 929-941
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.6 , pp. 929-941
    • Ye, J.1    Li, Q.2
  • 14
    • 0034300875 scopus 로고    scopus 로고
    • A new LDA-based face recognition system which can solve the small sample size problem
    • Chen L.-F., Hong-Yuan X., Liao M., Ko M.-T., Lin J.-C., and Yu G.-J. A new LDA-based face recognition system which can solve the small sample size problem. Pattern Recognition 33 (2000) 1713-1726
    • (2000) Pattern Recognition , vol.33 , pp. 1713-1726
    • Chen, L.-F.1    Hong-Yuan, X.2    Liao, M.3    Ko, M.-T.4    Lin, J.-C.5    Yu, G.-J.6
  • 15
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Scholkopf B., Smola A., and Muller K.R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10 5 (1998) 1299-1319
    • (1998) Neural Comput. , vol.10 , Issue.5 , pp. 1299-1319
    • Scholkopf, B.1    Smola, A.2    Muller, K.R.3
  • 16
    • 0038633559 scopus 로고    scopus 로고
    • Constructing descriptive and discriminative nonlinear features: Rayleigh coefficients in kernel feature spaces
    • Mika S., Ratsch G., Weston J., Scholkopf B., Smola A., and Muller K.-R. Constructing descriptive and discriminative nonlinear features: Rayleigh coefficients in kernel feature spaces. IEEE Trans. Pattern Anal. Mach. Intell. 25 5 (2003) 623-628
    • (2003) IEEE Trans. Pattern Anal. Mach. Intell. , vol.25 , Issue.5 , pp. 623-628
    • Mika, S.1    Ratsch, G.2    Weston, J.3    Scholkopf, B.4    Smola, A.5    Muller, K.-R.6
  • 17
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum J.B., de Silva V., and Langford J.C. A global geometric framework for nonlinear dimensionality reduction. Science 290 5500 (2000) 2319-2323
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    de Silva, V.2    Langford, J.C.3
  • 18
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis S.T., and Saul L.K. Nonlinear dimensionality reduction by locally linear embedding. Science 290 5500 (2000) 2323-2326
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 19
    • 2342517502 scopus 로고    scopus 로고
    • Think globally, fit locally: unsupervised learning of low dimensional manifolds
    • Saul L.K., and Roweis S.T. Think globally, fit locally: unsupervised learning of low dimensional manifolds. J. Mach. Learn. Res. 4 (2003) 119-155
    • (2003) J. Mach. Learn. Res. , Issue.4 , pp. 119-155
    • Saul, L.K.1    Roweis, S.T.2
  • 20
    • 84880203756 scopus 로고    scopus 로고
    • Laplacian eigenmaps and spectral techniques for embedding and clustering
    • Dietterich T.G., Becker S., and Ghahramani Z. (Eds), MIT Press, Cambridge, MA, USA
    • Belkin M., and Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Dietterich T.G., Becker S., and Ghahramani Z. (Eds). Advances in Neural Information Processing Systems vol. 14 (2002), MIT Press, Cambridge, MA, USA 585-591
    • (2002) Advances in Neural Information Processing Systems , vol.14 , pp. 585-591
    • Belkin, M.1    Niyogi, P.2
  • 21
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • Belkin M., and Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15 6 (2003) 1373-1396
    • (2003) Neural Comput. , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 22
    • 49449098686 scopus 로고    scopus 로고
    • Y. Bengio, J.-F. Paiement, P. Vincent, Out-of-sample extensions for LLE, Isomap, MDS, eigenmaps, and spectral clustering, Technical Report 1238, D'epartement d'Informatique et Recherche Op'erationnelle, July 25, 2003.
    • Y. Bengio, J.-F. Paiement, P. Vincent, Out-of-sample extensions for LLE, Isomap, MDS, eigenmaps, and spectral clustering, Technical Report 1238, D'epartement d'Informatique et Recherche Op'erationnelle, July 25, 2003.
  • 23
    • 34548547033 scopus 로고    scopus 로고
    • E. Kokiopoulou, Y. Saad, Orthogonal neighborhood preserving projections, in: Proceedings of the Fifth IEEE International Conference on Data Mining, 2005, pp. 1-7.
    • E. Kokiopoulou, Y. Saad, Orthogonal neighborhood preserving projections, in: Proceedings of the Fifth IEEE International Conference on Data Mining, 2005, pp. 1-7.
  • 24
    • 49449117450 scopus 로고    scopus 로고
    • D. de Ridder, R.P.W. Duin, Locally linear embedding for classification, Technical Report PH-2002-01, Pattern Recognition Group, Department of Imaging Science and Technology, Delft University of Technology, Delft, The Netherlands, 2002.
    • D. de Ridder, R.P.W. Duin, Locally linear embedding for classification, Technical Report PH-2002-01, Pattern Recognition Group, Department of Imaging Science and Technology, Delft University of Technology, Delft, The Netherlands, 2002.
  • 26
    • 33644932398 scopus 로고    scopus 로고
    • Face recognition based on supervised locally linear embedding method
    • Bai X., Yin B., Shi Q., and Sun Y. Face recognition based on supervised locally linear embedding method. J. Inf. Comput. Sci. 4 (2005) 641-646
    • (2005) J. Inf. Comput. Sci. , Issue.4 , pp. 641-646
    • Bai, X.1    Yin, B.2    Shi, Q.3    Sun, Y.4
  • 27
    • 33947511701 scopus 로고    scopus 로고
    • Supervised locally linear embedding algorithm for pattern recognition
    • Springer, Berlin
    • Kouropteva O., Okun O., and Pietikainen M. Supervised locally linear embedding algorithm for pattern recognition. IbPRIA 2003, Lecture Notes in Computer Science vol. 2652 (2003), Springer, Berlin 386-394
    • (2003) IbPRIA 2003, Lecture Notes in Computer Science , vol.2652 , pp. 386-394
    • Kouropteva, O.1    Okun, O.2    Pietikainen, M.3
  • 28
    • 84898934594 scopus 로고    scopus 로고
    • Grouping and dimensionality reduction by locally linear embedding
    • Dietterich T.G., Becker S., and Ghahramani Z. (Eds), MIT Press, Cambridge, MA, USA
    • Polito M., and Perona P. Grouping and dimensionality reduction by locally linear embedding. In: Dietterich T.G., Becker S., and Ghahramani Z. (Eds). Advances in Neural Information Processing Systems vol. 14 (2002), MIT Press, Cambridge, MA, USA 1255-1262
    • (2002) Advances in Neural Information Processing Systems , vol.14 , pp. 1255-1262
    • Polito, M.1    Perona, P.2
  • 30
    • 33750342625 scopus 로고    scopus 로고
    • Ensemble-based discriminant manifold learning for face recognition
    • Springer, Berlin
    • Zhang J., Shen H., and Zhou Z.-H. Ensemble-based discriminant manifold learning for face recognition. ICNC 2006, Part I, Lecture Notes in Computer Science vol. 4221 (2006), Springer, Berlin 29-38
    • (2006) ICNC 2006, Part I, Lecture Notes in Computer Science , vol.4221 , pp. 29-38
    • Zhang, J.1    Shen, H.2    Zhou, Z.-H.3
  • 31
    • 32544440932 scopus 로고    scopus 로고
    • A new nonlinear feature extraction method for face recognition
    • Pang Y., Liu Z., and Yu N. A new nonlinear feature extraction method for face recognition. Neurocomputing 69 (2006) 949-953
    • (2006) Neurocomputing , vol.69 , pp. 949-953
    • Pang, Y.1    Liu, Z.2    Yu, N.3
  • 32
    • 10044221878 scopus 로고    scopus 로고
    • D. de Ridder, M. Loog, M.J.T. Reinders, Local Fisher embedding, in: The 17th International Conference on Pattern Recognition, vol. 2, 2004, pp. 295-298.
    • D. de Ridder, M. Loog, M.J.T. Reinders, Local Fisher embedding, in: The 17th International Conference on Pattern Recognition, vol. 2, 2004, pp. 295-298.
  • 33
    • 49449104366 scopus 로고    scopus 로고
    • X. He, D. Cai, S. Yan, H.-J. Zhang, in: Tenth IEEE International Conference on Computer Vision (ICCV'2005), Beijing, China, October 2005.
    • X. He, D. Cai, S. Yan, H.-J. Zhang, in: Tenth IEEE International Conference on Computer Vision (ICCV'2005), Beijing, China, October 2005.
  • 34
    • 33144458972 scopus 로고    scopus 로고
    • Efficient and robust feature extraction by maximum margin criterion
    • Li H., Jiang T., and Zhang K. Efficient and robust feature extraction by maximum margin criterion. IEEE Trans. Neural Networks 17 1 (2006) 157-165
    • (2006) IEEE Trans. Neural Networks , vol.17 , Issue.1 , pp. 157-165
    • Li, H.1    Jiang, T.2    Zhang, K.3
  • 35
    • 15044364586 scopus 로고    scopus 로고
    • Locally linear discriminant analysis for multimodally distributed classes for face recognition with a single model image
    • Kim T.K., and Kittler J. Locally linear discriminant analysis for multimodally distributed classes for face recognition with a single model image. IEEE Trans. Pattern Anal. Mach. Intell. 27 3 (2005) 318-327
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.3 , pp. 318-327
    • Kim, T.K.1    Kittler, J.2
  • 39
    • 49449118738 scopus 로고    scopus 로고
    • Yale University Face Database, 〈http://cvc.yale.edu/projects/yalefaces/yalefaces.html〉, 2002.
    • Yale University Face Database, 〈http://cvc.yale.edu/projects/yalefaces/yalefaces.html〉, 2002.
  • 40
    • 49449113526 scopus 로고    scopus 로고
    • Y. Chang, C. Hu, M. Turk, Manifold of facial expression, in: Proceedings of the IEEE International Workshop Analysis and Modeling of Faces and Gestures, October 2003.
    • Y. Chang, C. Hu, M. Turk, Manifold of facial expression, in: Proceedings of the IEEE International Workshop Analysis and Modeling of Faces and Gestures, October 2003.
  • 41
    • 0034704189 scopus 로고    scopus 로고
    • The manifold ways of perception
    • Seung H.S., and Lee D.D. The manifold ways of perception. Science 290 (2000) 2268-2269
    • (2000) Science , vol.290 , pp. 2268-2269
    • Seung, H.S.1    Lee, D.D.2
  • 42
    • 18244422049 scopus 로고    scopus 로고
    • K.-C. Lee, J. Ho, M.-H. Yang, D. Kriegman, Video-based face recognition using probabilistic appearance manifolds, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, 2003, pp. 313-320.
    • K.-C. Lee, J. Ho, M.-H. Yang, D. Kriegman, Video-based face recognition using probabilistic appearance manifolds, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, 2003, pp. 313-320.
  • 43
    • 49449094695 scopus 로고    scopus 로고
    • D. DeCoste, Visualizing Mercer kernel feature spaces via kernelized locally-linear embeddings, in: Proceedings of the Eighth International Conference on Neural Information Processing, Shanghai, China, 14-18 November 2001.
    • D. DeCoste, Visualizing Mercer kernel feature spaces via kernelized locally-linear embeddings, in: Proceedings of the Eighth International Conference on Neural Information Processing, Shanghai, China, 14-18 November 2001.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.