메뉴 건너뛰기




Volumn 3, Issue 1, 2004, Pages 133-149

A Newton-type method for computing best segment approximations

Author keywords

Chebyschev approximation; Newton method; Optimal knot selection; Piecewise polynomial functions

Indexed keywords


EID: 4944253996     PISSN: 15340392     EISSN: 15535258     Source Type: Journal    
DOI: 10.3934/cpaa.2004.3.133     Document Type: Article
Times cited : (5)

References (16)
  • 2
    • 24944465029 scopus 로고
    • Chebyshev approximation by spline functions with free knots
    • D. Braess, Chebyshev approximation by spline functions with free knots, Numerische Mathematik, 17, 1971.
    • (1971) Numerische Mathematik , vol.17
    • Braess, D.1
  • 4
    • 0041467021 scopus 로고
    • Characteristic properties of the segmented rational minimax approximation
    • C.L. Lawson, Characteristic properties of the segmented rational minimax approximation, Numerische Mathematik, 6, 1964.
    • (1964) Numerische Mathematik , vol.6
    • Lawson, C.L.1
  • 15
    • 24944494892 scopus 로고
    • Computing best segment approximations
    • Arizona State University, Tempe
    • H.J. Wolters, Computing best segment approximations, Technical Report 93-001, Arizona State University, Tempe, 1993.
    • (1993) Technical Report , vol.93 , Issue.1
    • Wolters, H.J.1
  • 16
    • 4544232505 scopus 로고    scopus 로고
    • An adaptive mesh redistribution algorithm for convection-dominated problems
    • Z.R. Zhang and T. Tang, An adaptive mesh redistribution algorithm for convection-dominated problems, Communications on Pure and Applied Analysis, (3) 1 (2002).
    • (2002) Communications on Pure and Applied Analysis , vol.1 , Issue.3
    • Zhang, Z.R.1    Tang, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.