메뉴 건너뛰기




Volumn 62, Issue 3, 2004, Pages 553-568

Quenching for a degenerate parabolic problem due to a concentrated nonlinear source

Author keywords

Concentrated nonlinear source; Critical length; Degenerate parabolic problem; No quenching in infinite time; Single point quenching; Unique continuous solution

Indexed keywords

BESSEL FUNCTIONS; CONVERGENCE OF NUMERICAL METHODS; EIGENVALUES AND EIGENFUNCTIONS; GREEN'S FUNCTION; INTEGRAL EQUATIONS; NONLINEAR EQUATIONS; THEOREM PROVING;

EID: 4944232728     PISSN: 0033569X     EISSN: None     Source Type: Journal    
DOI: 10.1090/qam/2086046     Document Type: Article
Times cited : (23)

References (12)
  • 1
    • 0038460463 scopus 로고    scopus 로고
    • Existence of classical solutions for degenerate semilinear parabolic problems
    • C. Y. Chan and W. Y. Chan, Existence of classical solutions for degenerate semilinear parabolic problems, Appl. Math. Comput. 101, 125-149 (1999)
    • (1999) Appl. Math. Comput. , vol.101 , pp. 125-149
    • Chan, C.Y.1    Chan, W.Y.2
  • 2
    • 0001261321 scopus 로고
    • Quenching for semilinear singular parabolic problems
    • C. Y. Chan and H. G. Kaper, Quenching for semilinear singular parabolic problems, SIAM J. Math Anal 20, 558-566 (1989)
    • (1989) SIAM J. Math Anal , vol.20 , pp. 558-566
    • Chan, C.Y.1    Kaper, H.G.2
  • 3
    • 84963428286 scopus 로고
    • Quenching for degenerate semilinear parabolic equations
    • C. Y. Chan and P. C. Kong, Quenching for degenerate semilinear parabolic equations, Appl. Anal. 54, 17-25 (1994)
    • (1994) Appl. Anal. , vol.54 , pp. 17-25
    • Chan, C.Y.1    Kong, P.C.2
  • 4
    • 0031103708 scopus 로고    scopus 로고
    • Channel flow of a viscous fluid in the boundary layer
    • C. Y. Chan and P. C. Kong, Channel flow of a viscous fluid in the boundary layer, Quart. Appl. Math 55, 51-56 (1997)
    • (1997) Quart Appl. Math , vol.55 , pp. 51-56
    • Chan, C.Y.1    Kong, P.C.2
  • 5
    • 4644245210 scopus 로고    scopus 로고
    • Does quenching for degenerate parabolic equations occur at the boundaries?
    • Series A
    • C. Y. Chan and H. T. Liu, Does quenching for degenerate parabolic equations occur at the boundaries?, Dynam. Contin. Discrete Impuls. Systems (Series A) 8, 121-128 (2001)
    • (2001) Dynam. Contin. Discrete Impuls. Systems , vol.8 , pp. 121-128
    • Chan, C.Y.1    Liu, H.T.2
  • 6
    • 0038617313 scopus 로고    scopus 로고
    • Single-point blow-up for a degenerate parabolic problem due to a concentrated nonlinear source
    • C. Y. Chan and H. Y. Tian, Single-point blow-up for a degenerate parabolic problem due to a concentrated nonlinear source, Quart. Appl. Math. 61, 363-385 (2003).
    • (2003) Quart Appl. Math. , vol.61 , pp. 363-385
    • Chan, C.Y.1    Tian, H.Y.2
  • 7
    • 0040984139 scopus 로고    scopus 로고
    • Quenching for a diffusive equation with a concentrated singularity
    • K. Deng and C. A. Roberts, Quenching for a diffusive equation with a concentrated singularity, Differential Integral Equations 10, 369-379 (1997)
    • (1997) Differential Integral Equations , vol.10 , pp. 369-379
    • Deng, K.1    Roberts, C.A.2
  • 10
    • 0003655416 scopus 로고
    • 3rd ed., Macmillan Publishing Co., New York, NY
    • H. L. Royden, Real Analysis, 3rd ed., Macmillan Publishing Co., New York, NY, 1988, p. 87
    • (1988) Real Analysis , pp. 87
    • Royden, H.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.