-
1
-
-
0038374781
-
Existence of minimizing Willmore surfaces of prescribed genus
-
Zbl 1029.53073 MR 1941840
-
BAUER, M. & KUWERT, E. Existence of minimizing Willmore surfaces of prescribed genus. Int. Math. Res. Not. 2003, no. 10, 553-576. Zbl 1029.53073 MR 1941840
-
Int. Math. Res. Not.
, vol.2003
, Issue.10
, pp. 553-576
-
-
Bauer, M.1
Kuwert, E.2
-
2
-
-
2342475802
-
A finite element method for surface restoration with smooth boundary conditions
-
MR 2058390
-
CLARENZ, U., DIEWALD, U., DZIUK, G., RUMPF, M., & RUSU, R. A finite element method for surface restoration with smooth boundary conditions. Comput. Aided Geom. Design 21 (2004), 427-445. MR 2058390
-
(2004)
Comput. Aided Geom. Design
, vol.21
, pp. 427-445
-
-
Clarenz, U.1
Diewald, U.2
Dziuk, G.3
Rumpf, M.4
Rusu, R.5
-
3
-
-
1942435706
-
On generalized mean curvature flow
-
H. Karcher and S. Hildebrandt (eds.), Springer Zbl 1035.53091 MR 2008341
-
CLARENZ, U., DZIUK, G., & RUMPF, M. On generalized mean curvature flow. Geometric Analysis and Nonlinear Partial Differential Equations, H. Karcher and S. Hildebrandt (eds.), Springer (2003), 217-248. Zbl 1035.53091 MR 2008341
-
(2003)
Geometric Analysis and Nonlinear Partial Differential Equations
, pp. 217-248
-
-
Clarenz, U.1
Dziuk, G.2
Rumpf, M.3
-
4
-
-
0348203031
-
Compactness theorems and an isoperimetric inequality for critical points of elliptic parametric functionals
-
Zbl 0968.35039 MR 1808108
-
CLARENZ, U. & VON DER MOSEL, H. Compactness theorems and an isoperimetric inequality for critical points of elliptic parametric functionals. Calc. Var. 12 (2000), 85-107. Zbl 0968.35039 MR 1808108
-
(2000)
Calc. Var.
, vol.12
, pp. 85-107
-
-
Clarenz, U.1
Von Der Mosel, H.2
-
6
-
-
84974486768
-
A uniqueness proof for the Wulff theorem
-
Zbl 0752.49019 MR 1130601
-
FONSECA, I. & MÜLLER, S. A uniqueness proof for the Wulff theorem. Proc. Roy. Soc. Edinburgh Sect. A 119 (1991), 125-136. Zbl 0752.49019 MR 1130601
-
(1991)
Proc. Roy. Soc. Edinburgh Sect. A
, vol.119
, pp. 125-136
-
-
Fonseca, I.1
Müller, S.2
-
7
-
-
0035289434
-
The Willmore flow with small initial energy
-
Zbl 1035.53092 MR 1882663
-
KUWERT, E. & SCHÄTZLE, R. The Willmore flow with small initial energy. J. Differential Geom. 57 (2001), 409-441. Zbl 1035.53092 MR 1882663
-
(2001)
J. Differential Geom.
, vol.57
, pp. 409-441
-
-
Kuwert, E.1
Schätzle, R.2
-
8
-
-
0038779042
-
Gradient flow for the Willmore functional
-
Zbl 1029.53082 MR 1900754
-
KUWERT, E. & SCHÄTZLE, R. Gradient flow for the Willmore functional. Comm. Anal. Geom. 10 (2002), 307-339. Zbl 1029.53082 MR 1900754
-
(2002)
Comm. Anal. Geom.
, vol.10
, pp. 307-339
-
-
Kuwert, E.1
Schätzle, R.2
-
10
-
-
78651547991
-
A numerical scheme for axisymmetric solutions of curvature driven free boundary problems with applications to the Willmore flow
-
Zbl 1005.65095 MR 1877537
-
MAYER, U. F. & SIMONETT, G. A numerical scheme for axisymmetric solutions of curvature driven free boundary problems with applications to the Willmore flow. Interfaces Free Bound. 4 (2002), 89-109. Zbl 1005.65095 MR 1877537
-
(2002)
Interfaces Free Bound.
, vol.4
, pp. 89-109
-
-
Mayer, U.F.1
Simonett, G.2
-
11
-
-
0039806152
-
Periodic surfaces that are extremal for energy functionals containing curvature functions
-
H. T. Davis and J. C. C. Nitsche (eds.), Springer Zbl 0794.53007 MR 1226921
-
NITSCHE, J. C. C. Periodic surfaces that are extremal for energy functionals containing curvature functions. Statistical Thermodynamics and Differential Geometry of Micro structured Materials, H. T. Davis and J. C. C. Nitsche (eds.), Springer (1993), 69-98. Zbl 0794.53007 MR 1226921
-
(1993)
Statistical Thermodynamics and Differential Geometry of Micro Structured Materials
, pp. 69-98
-
-
Nitsche, J.C.C.1
-
12
-
-
22444454707
-
Stability of the Wulff shape
-
Zbl 0924.53009 MR 1473676
-
PALMER, B. Stability of the Wulff shape. Proc. Amer. Math. Soc. 126 (1998), 3661-3667. Zbl 0924.53009 MR 1473676
-
(1998)
Proc. Amer. Math. Soc.
, vol.126
, pp. 3661-3667
-
-
Palmer, B.1
-
16
-
-
51249172441
-
Curvature estimates for immersions of minimal surface type via uniformization and theorems of Bernstein type
-
Zbl 0703.53050 MR 1037997
-
SAUVIGNY, F. Curvature estimates for immersions of minimal surface type via uniformization and theorems of Bernstein type. Manuscripta Math. 67 (1990), 69-97. Zbl 0703.53050 MR 1037997
-
(1990)
Manuscripta Math.
, vol.67
, pp. 69-97
-
-
Sauvigny, F.1
-
17
-
-
0004096780
-
-
Proc. Centre Math. Anal. Austral. Nat. Univ. 3 Zbl 0546.49019 MR 0756417
-
SIMON, L. Lectures on Geometric Measure Theory. Proc. Centre Math. Anal. Austral. Nat. Univ. 3 (1984). Zbl 0546.49019 MR 0756417
-
(1984)
Lectures on Geometric Measure Theory
-
-
Simon, L.1
-
18
-
-
0000526405
-
Existence of surfaces minimizing the Willmore functional
-
Zbl 0848.58012 MR 1243525
-
SIMON, L. Existence of surfaces minimizing the Willmore functional. Comm. Anal. Geom. 1 (1993), 281-326. Zbl 0848.58012 MR 1243525
-
(1993)
Comm. Anal. Geom.
, vol.1
, pp. 281-326
-
-
Simon, L.1
-
19
-
-
0011599168
-
The Willmore flow near spheres
-
Zbl pre01832854 MR 1827100
-
SIMONETT, G. The Willmore flow near spheres. Differential Integral Equations 14 (2001), 1005-1014. Zbl pre01832854 MR 1827100
-
(2001)
Differential Integral Equations
, vol.14
, pp. 1005-1014
-
-
Simonett, G.1
-
20
-
-
0004265477
-
-
Clarendon Press, Oxford Zbl 0797.53002 MR 1261641
-
WILLMORE, T. J. Riemannian Geometry. Clarendon Press, Oxford (1993). Zbl 0797.53002 MR 1261641
-
(1993)
Riemannian Geometry
-
-
Willmore, T.J.1
-
21
-
-
0001421454
-
Zur Frage der Geschwindigkeit des Wachsthums und der Auflösung der Kristallflächen
-
WULFF, G. Zur Frage der Geschwindigkeit des Wachsthums und der Auflösung der Kristallflächen. Z. Kristallographie 34 (1901), 449-530.
-
(1901)
Z. Kristallographie
, vol.34
, pp. 449-530
-
-
Wulff, G.1
-
22
-
-
84963815816
-
Fair triangle mesh generation with discrete elastica
-
RIKEN, Saitama
-
YOSHIZAWA, S. & BELYAEV, A. G. Fair triangle mesh generation with discrete elastica. Geometric Modeling and Processing, RIKEN, Saitama (2002), 119-123.
-
(2002)
Geometric Modeling and Processing
, pp. 119-123
-
-
Yoshizawa, S.1
Belyaev, A.G.2
|