메뉴 건너뛰기




Volumn 47, Issue 14, 2008, Pages 4917-4923

Modelling of the batch sucrose crystallization kinetics using artificial neural networks: Comparison with conventional regression analysis

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; BACKPROPAGATION; CORRELATION METHODS; CRYSTAL GROWTH; CRYSTALLIZATION; CRYSTALLIZATION KINETICS; ECOLOGY; FISCHER-TROPSCH SYNTHESIS; FOOD PROCESSING; FORECASTING; GRAIN BOUNDARIES; GROWTH RATE; IMAGE CLASSIFICATION; POWDERS; REGRESSION ANALYSIS; SUGAR (SUCROSE); VEGETATION;

EID: 49249115556     PISSN: 08885885     EISSN: None     Source Type: Journal    
DOI: 10.1021/ie701706v     Document Type: Article
Times cited : (18)

References (14)
  • 1
    • 0029335114 scopus 로고
    • Using back propagation networks for the estimation of aqueous activity coefficients of aromatic compounds
    • Chow, H.; Chen, H.; Ng, T.; Myrdal, P.; Yalkowsky, S. H. Using back propagation networks for the estimation of aqueous activity coefficients of aromatic compounds. J. Chem. Inf. Comput. Sci. 1995, 35, 723-728.
    • (1995) J. Chem. Inf. Comput. Sci , vol.35 , pp. 723-728
    • Chow, H.1    Chen, H.2    Ng, T.3    Myrdal, P.4    Yalkowsky, S.H.5
  • 2
    • 34249091993 scopus 로고    scopus 로고
    • Study of acid orange 7 removal from aqueous solutions by powdered activated carbon and modeling of experimental results by artificial neural network
    • Aber, S.; Daneshvar, N.; Soroureddin, S. M.; Chabk, A.; Zeynali, K. S. Study of acid orange 7 removal from aqueous solutions by powdered activated carbon and modeling of experimental results by artificial neural network. Desalination 2007, 211, 87-95.
    • (2007) Desalination , vol.211 , pp. 87-95
    • Aber, S.1    Daneshvar, N.2    Soroureddin, S.M.3    Chabk, A.4    Zeynali, K.S.5
  • 3
    • 33847622042 scopus 로고    scopus 로고
    • Use of artificial networks for estimating the water content of natural gases
    • Mohammadi, A. H.; Richon, D. Use of artificial networks for estimating the water content of natural gases. Ind. Eng. Chem. Res. 2007, 46, 1431-1438.
    • (2007) Ind. Eng. Chem. Res , vol.46 , pp. 1431-1438
    • Mohammadi, A.H.1    Richon, D.2
  • 4
    • 15844426566 scopus 로고    scopus 로고
    • Optimization of an artificial neural network for modelling protein solubility
    • Naik, A. D.; Bhagwat, S. S. Optimization of an artificial neural network for modelling protein solubility. J. Chem. Eng. Data 2005, 50, 460-467.
    • (2005) J. Chem. Eng. Data , vol.50 , pp. 460-467
    • Naik, A.D.1    Bhagwat, S.S.2
  • 5
    • 30444457209 scopus 로고    scopus 로고
    • Application of neural network for the prediction of crystallization kinetics
    • Yang, M.; Wei, H. Application of neural network for the prediction of crystallization kinetics. Ind. Eng. Chem. Res. 2006, 45, 70-75.
    • (2006) Ind. Eng. Chem. Res , vol.45 , pp. 70-75
    • Yang, M.1    Wei, H.2
  • 6
    • 0030565201 scopus 로고    scopus 로고
    • Artificial neural network prediction of tetragonal lysozyme face growth rates
    • Noever, D.; Pusey, M. L.; Forsythe, E.; Baskaran, S. Artificial neural network prediction of tetragonal lysozyme face growth rates. J. Cryst. Growth 1996, 167, 221-236.
    • (1996) J. Cryst. Growth , vol.167 , pp. 221-236
    • Noever, D.1    Pusey, M.L.2    Forsythe, E.3    Baskaran, S.4
  • 7
    • 0042827953 scopus 로고    scopus 로고
    • Knowledge-based hybrid modelling of a batch crystallisation when accounting for nucleation, growth and agglomeration phenomena
    • Georgieva, P.; Meireles, M. J.; de Azevedo, S. Knowledge-based hybrid modelling of a batch crystallisation when accounting for nucleation, growth and agglomeration phenomena. Chem. Eng. Sci. 2003, 58, 3699-3713.
    • (2003) Chem. Eng. Sci , vol.58 , pp. 3699-3713
    • Georgieva, P.1    Meireles, M.J.2    de Azevedo, S.3
  • 8
    • 21844490760 scopus 로고
    • Investigation of crystal growth in a laboratory fluidized bed
    • Guimaraes, L.; Sa, S.; Bento, L. S. M.; Rocha, F. Investigation of crystal growth in a laboratory fluidized bed. Int. Sugar J. 1995, 97, 199-204.
    • (1995) Int. Sugar J , vol.97 , pp. 199-204
    • Guimaraes, L.1    Sa, S.2    Bento, L.S.M.3    Rocha, F.4
  • 9
    • 33745759445 scopus 로고    scopus 로고
    • The role of diffusional resistance on crystal growth: Interpretation of dissolution and growth data
    • Martins, P. M.; Rocha, F. The role of diffusional resistance on crystal growth: Interpretation of dissolution and growth data. Chem. Eng. Sci. 2006, 61, 5686-5695.
    • (2006) Chem. Eng. Sci , vol.61 , pp. 5686-5695
    • Martins, P.M.1    Rocha, F.2
  • 11
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • Hagan, M. T.; Menhaj, M. B. Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Networks 1994, 5 (6), 989-993.
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 12
    • 49249128277 scopus 로고    scopus 로고
    • Neural Network Toolbox, User Guide; The MathWorks, Inc.: Natick, MA, 2000.
    • Neural Network Toolbox, User Guide; The MathWorks, Inc.: Natick, MA, 2000.
  • 13
    • 0001447184 scopus 로고
    • Neural network studies. 1. Comparison of overfitting and overtraining
    • Tetko, I. V.; Livinsgstone, D. J.; Luik, A. I. Neural network studies. 1. Comparison of overfitting and overtraining. J. Chem. Inf. Comput. Sci. 1995, 35, 826-833.
    • (1995) J. Chem. Inf. Comput. Sci , vol.35 , pp. 826-833
    • Tetko, I.V.1    Livinsgstone, D.J.2    Luik, A.I.3
  • 14
    • 1342306639 scopus 로고    scopus 로고
    • 2O system with artificial neural network
    • 2O system with artificial neural network. J. Cryst. Growth 2004, 264, 409-416.
    • (2004) J. Cryst. Growth , vol.264 , pp. 409-416
    • Zhang, X.1    Zhang, S.2    He, X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.