메뉴 건너뛰기




Volumn 34, Issue C, 1980, Pages 269-295

Variations on Arnoldi's method for computing eigenelements of large unsymmetric matrices

(1)  Saad, Y a  


Author keywords

[No Author keywords available]

Indexed keywords


EID: 49149143501     PISSN: 00243795     EISSN: None     Source Type: Journal    
DOI: 10.1016/0024-3795(80)90169-X     Document Type: Article
Times cited : (433)

References (20)
  • 1
    • 0002807741 scopus 로고
    • The principle of minimized iterations in the solution of the matrix eigenvalue problem
    • (1951) Quart. Appl. Math. , vol.9 , pp. 17-29
    • Arnoldi1
  • 9
    • 0004071490 scopus 로고
    • Algorithms for sparse matrix eigenvalue problems
    • Stanford Univ. Report 77–595
    • (1977) Ph.D. Thesis
    • Lewis1
  • 11
    • 0003761695 scopus 로고
    • The computation of eigenvalues and eigenvectors of very large sparse matrices
    • Univ. of London
    • (1971) Ph.D. dissertation
    • Paige1
  • 12
  • 14
    • 84968508607 scopus 로고
    • Implementation aspects of band Lanczos algorithms for computation of eigenvalues of large sparse matrices
    • (1979) Mathematics of Computation , vol.33 , Issue.146 , pp. 680-687
    • Ruhe1
  • 15
    • 0008457130 scopus 로고
    • Calcul de valeurs propres de grandes matrices hermitiennes par des techniques de partitionnement
    • Univ. of Grenoble
    • (1974) Thesis
    • Saad1
  • 16
    • 84910312571 scopus 로고    scopus 로고
    • Y. Saad, On the rates of convergence of the Lanczos and the block Lanczos methods, SIAM J. Numer. Anal., to appear.
  • 17
    • 84910241791 scopus 로고
    • Etude de la convergence du procédé d'Arnoldi pour le calcul d'éléments propres de grandes matrices non symetriques
    • University of Grenoble
    • (1979) Seminar of Numerical Analysis , pp. 321
    • Saad1
  • 19
    • 84910257027 scopus 로고    scopus 로고
    • G.W. Stewart, SRRIT, a FORTRAN subroutine to calculate the dominant invariant subspace of a real matrix, ACM Trans. Math. Software, to appear.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.