메뉴 건너뛰기




Volumn 1, Issue , 2007, Pages 119-154

Causal inference in longitudinal studies with history-restricted marginal structural models

Author keywords

Causal inference; Counterfactual; Double robust; G computation; IPTW; Longitudinal study; Marginal structural model

Indexed keywords


EID: 49149121461     PISSN: 19357524     EISSN: None     Source Type: Journal    
DOI: 10.1214/07-EJS050     Document Type: Article
Times cited : (24)

References (29)
  • 3
    • 0035528171 scopus 로고    scopus 로고
    • Causal inference in complex longitudinal studies: The continuous case
    • Gill, R. and Robins, J. (2001). Causal inference in complex longitudinal studies: the continuous case. Annals of Statistics 29(6), 1785-1811.
    • (2001) Annals of Statistics , vol.29 , Issue.6 , pp. 1785-1811
    • Gill, R.1    Robins, J.2
  • 4
    • 0001206510 scopus 로고    scopus 로고
    • Coarsening at random: Characterizations, conjectures and counter-examples
    • D. Lin and T. Fleming, Eds. Lecture Notes in Statistics. Springer, New York
    • Gill, R., van der Laan, M., and Robins, J. (1997). Coarsening at random: Characterizations, conjectures and counter-examples. In Proceedings of the First Seattle Symposium in Biostatistics, 1995, D. Lin and T. Fleming, Eds. Lecture Notes in Statistics. Springer, New York, 255-294.
    • (1997) Proceedings of the First Seattle Symposium in Biostatistics , pp. 255-294
    • Gill, R.1    Van Der Laan, M.2    Robins, J.3
  • 5
    • 1042303693 scopus 로고    scopus 로고
    • Cause-specific mortality and the extended effects of particulate pollution and temperature exposure
    • Goodman, P., Dockery, D., and Clancy, L. (2004). Cause-specific mortality and the extended effects of particulate pollution and temperature exposure. Environ Health Perspect 112, 2, 179-185.
    • (2004) Environ Health Perspect , vol.112 , Issue.2 , pp. 179-185
    • Goodman, P.1    Dockery, D.2    Clancy, L.3
  • 6
    • 33645219055 scopus 로고    scopus 로고
    • Partially marginal structural models for causal inference [abstract]
    • Joffe, M., Santanna, J., and Feldman, H. (2001). Partially marginal structural models for causal inference [abstract]. Amer. J. Epidemiology 153, S261.
    • (2001) Amer. J. Epidemiology , vol.153
    • Joffe, M.1    Santanna, J.2    Feldman, H.3
  • 8
    • 33750699283 scopus 로고    scopus 로고
    • Causal effects in longitudinal studies: Definition and maximum likelihood estimation
    • Neugebauer, R. and van der Laan, M. (2006a). Causal effects in longitudinal studies: Definition and maximum likelihood estimation. Computational Statistics and Data Analysis 51, 1664-1675.
    • (2006) Computational Statistics and Data Analysis , vol.51 , pp. 1664-1675
    • Neugebauer, R.1    Van Der Laan, M.2
  • 9
    • 33750723791 scopus 로고    scopus 로고
    • G-computation estimation for causal inference with complex longitudinal data
    • Neugebauer, R. and van der Laan, M. (2006b). G-computation estimation for causal inference with complex longitudinal data. Computational Statistics and Data Analysis 51, 1676-1697.
    • (2006) Computational Statistics and Data Analysis , vol.51 , pp. 1676-1697
    • Neugebauer, R.1    Van Der Laan, M.2
  • 10
    • 33749328767 scopus 로고    scopus 로고
    • Nonparametric causal effects based on marginal structural models
    • Neugebauer, R. and van der Laan, M. (2007). Nonparametric causal effects based on marginal structural models. Journal of Statistical Planning and Inference 137, 419-434. [http://www.sciencedirect.com/].
    • (2007) Journal of Statistical Planning and Inference , vol.137 , pp. 419-434
    • Neugebauer, R.1    Van Der Laan, M.2
  • 11
    • 85035256717 scopus 로고
    • essay on principles. section 9. Translation of excerpts by D. Dabrowska and T. Speed. Statistical Science
    • Neyman, J. (1923). On the application of probability theory to agricultural experiments. essay on principles. section 9. Translation of excerpts by D. Dabrowska and T. Speed. Statistical Science 6, (1990):462-472.
    • (1923) On the Application of Probability Theory to Agricultural Experiments. , vol.6 , Issue.1990 , pp. 462-472
    • Neyman, J.1
  • 12
    • 46149139403 scopus 로고
    • A new approach to causal inference in mortality studies with sustained exposure periods - application to control of the healthy worker survivor effect
    • Robins, J. (1986). A new approach to causal inference in mortality studies with sustained exposure periods - application to control of the healthy worker survivor effect. Mathematical Modelling 7, 1393-1512.
    • (1986) Mathematical Modelling , vol.7 , pp. 1393-1512
    • Robins, J.1
  • 13
    • 0023203075 scopus 로고
    • A graphical approach to the identification and estimation of causal parameters in mortality studies with sustained exposure periods
    • Robins, J. (1987). A graphical approach to the identification and estimation of causal parameters in mortality studies with sustained exposure periods. Journal of Chronic Disease 40, 139s-161s. Supplement 2.
    • (1987) Journal of Chronic Disease , vol.40 , pp. 139s-161s
    • Robins, J.1
  • 14
  • 15
    • 0002317236 scopus 로고    scopus 로고
    • Structural nested failure time models.
    • John Wiley and Sons, Chichester, U.K., Chapter Survival Analysis, P.K. andersen and N. Keidig (Section editors)
    • Robins, J. (1998b). Structural nested failure time models. The Encyclopedia of Biostatistics. John Wiley and Sons, Chichester, U.K., Chapter Survival Analysis, P.K. andersen and N. Keidig (Section editors), 4372-4389.
    • (1998) The Encyclopedia of Biostatistics , pp. 4372-4389
    • Robins, J.1
  • 16
    • 0001415308 scopus 로고    scopus 로고
    • Association, causation, and marginal structural models
    • Robins, J. (1999a). Association, causation, and marginal structural models. Synthese 121, 151-179.
    • (1999) Synthese , vol.121 , pp. 151-179
    • Robins, J.1
  • 17
    • 0003135327 scopus 로고    scopus 로고
    • Marginal structural models versus structural nested models as tools for causal inference
    • Springer-Verlag
    • Robins, J. (1999b). Marginal structural models versus structural nested models as tools for causal inference. Statistical Models in Epidemiology: The Environment and Clinical Trials. Springer-Verlag, 95-134.
    • (1999) Statistical Models in Epidemiology: The Environment and Clinical Trials. , pp. 95-134
    • Robins, J.1
  • 19
    • 0033847784 scopus 로고    scopus 로고
    • Marginal structural models and causal inference in epidemiology
    • Robins, J., Hernàn, M., and Brumback, B. (2000). Marginal structural models and causal inference in epidemiology. Epidemiology 11, 5, 550-560.
    • (2000) Epidemiology , vol.11 , Issue.5 , pp. 550-560
    • Robins, J.1    Hernàn, M.2    Brumback, B.3
  • 20
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin, D. (1976). Inference and missing data. Biometrika, 581-590.
    • (1976) Biometrika , pp. 581-590
    • Rubin, D.1
  • 22
    • 4344597295 scopus 로고    scopus 로고
    • Effects of physical activity and body composition on functional limitation in the elderly: Application of the marginal structural model
    • Tager, I., Haight, T., Sternfeld, B., Yu, Z., and van der Laan, M. (2004). Effects of physical activity and body composition on functional limitation in the elderly: application of the marginal structural model. Epidemiology 15, 4, 479-493.
    • (2004) Epidemiology , vol.15 , Issue.4 , pp. 479-493
    • Tager, I.1    Haight, T.2    Sternfeld, B.3    Yu, Z.4    Van Der Laan, M.5
  • 27
    • 36849065442 scopus 로고    scopus 로고
    • History-adjusted marginal structural models and statistically-optimal dynamic treatment regimens
    • van der Laan, M. et al. (2005). History-adjusted marginal structural models and statistically-optimal dynamic treatment regimens. The International Journal of Biostatistics.
    • (2005) The International Journal of Biostatistics.
    • Van Der Laan, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.