-
3
-
-
0011187879
-
Multiple classifier combination: Lessons and next steps
-
Bunke, H, Kandel, A, eds, World Scientific
-
Ho, T.K.: Multiple classifier combination: Lessons and next steps. In Bunke, H., Kandel, A., eds.: Hybrid Methods in Pattern Recognition. World Scientific (2002) 171-198
-
(2002)
Hybrid Methods in Pattern Recognition
, pp. 171-198
-
-
Ho, T.K.1
-
4
-
-
80053403826
-
Ensemble methods in machine learning
-
Kittler, J, Roli, F, eds, Springer
-
Dietterich, T.G.: Ensemble methods in machine learning. In Kittler, J., Roli, F., eds.: Multiple Classifier Systems. Volume 1857 of Lecture Notes in Computer Science., Springer (2000) 1-15
-
(2000)
Multiple Classifier Systems. Volume 1857 of Lecture Notes in Computer Science
, pp. 1-15
-
-
Dietterich, T.G.1
-
5
-
-
0037403516
-
Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
-
Kuncheva, L.L, Whitaker, C.J.: Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine Learning 51 (2003) 181-207
-
(2003)
Machine Learning
, vol.51
, pp. 181-207
-
-
Kuncheva, L.L.1
Whitaker, C.J.2
-
6
-
-
35048862917
-
-
Kuncheva, L.: That elusive diversity in classifier ensembles. In Lopez, F.J.P., Campilho, A.C., de la Blanca, N.P., Sanfeliu, A., eds.: IbPRIA. 2652 of Lecture Notes in Computer Science., Springer (2003) 1126-1138
-
Kuncheva, L.: That elusive diversity in classifier ensembles. In Lopez, F.J.P., Campilho, A.C., de la Blanca, N.P., Sanfeliu, A., eds.: IbPRIA. Volume 2652 of Lecture Notes in Computer Science., Springer (2003) 1126-1138
-
-
-
-
8
-
-
85054435084
-
Neural network ensembles, cross validation, and active learning
-
Tesauro, G, Touretzky, D.S, Leen, T.K, eds, MIT Press
-
Krogh, A., Vedelsby, J.: Neural network ensembles, cross validation, and active learning. In Tesauro, G., Touretzky, D.S., Leen, T.K., eds.: Advances in Neural Information Processing Systems. Volume 7., MIT Press (1995) 231-238
-
(1995)
Advances in Neural Information Processing Systems
, vol.7
, pp. 231-238
-
-
Krogh, A.1
Vedelsby, J.2
-
9
-
-
0001562581
-
Linear and order statistics combiners for pattern classification
-
Sharkey, A, ed, Springer-Verlag
-
Turner, K., Ghosh, J.: Linear and order statistics combiners for pattern classification. In Sharkey, A., ed.: Combining Artificial Neural Nets. Springer-Verlag (1999) 127-162
-
(1999)
Combining Artificial Neural Nets
, pp. 127-162
-
-
Turner, K.1
Ghosh, J.2
-
10
-
-
17444420350
-
Comparing rank and score combination methods for data fusion in information retrieval
-
Hsu, D.F., Taksa, I.: Comparing rank and score combination methods for data fusion in information retrieval. Information Retrieval 8(3) (2005) 449-480
-
(2005)
Information Retrieval
, vol.8
, Issue.3
, pp. 449-480
-
-
Hsu, D.F.1
Taksa, I.2
-
11
-
-
23844555629
-
Consensus scoring for improving enrichment in virtual screening
-
Yang, J.M., Chen, Y.F., Shen, T.W., Kristal, B.S., Hsu, D.F.: Consensus scoring for improving enrichment in virtual screening. Journal of Chemical Information and Modeling 45 (2005) 1134-1146
-
(2005)
Journal of Chemical Information and Modeling
, vol.45
, pp. 1134-1146
-
-
Yang, J.M.1
Chen, Y.F.2
Shen, T.W.3
Kristal, B.S.4
Hsu, D.F.5
-
12
-
-
32044473249
-
Using diversity of errors for selecting members of a committee classifier
-
Aksela, M., Laaksonen, J.: Using diversity of errors for selecting members of a committee classifier. Pattern Recognition 39 (2006) 608-623
-
(2006)
Pattern Recognition
, vol.39
, pp. 608-623
-
-
Aksela, M.1
Laaksonen, J.2
-
13
-
-
10444224738
-
Diversity measures for multiple classifier system analysis and design
-
Windeatt, T.: Diversity measures for multiple classifier system analysis and design. Information Fusion 6 (2005) 21-36
-
(2005)
Information Fusion
, vol.6
, pp. 21-36
-
-
Windeatt, T.1
-
14
-
-
10444241978
-
Ensemble diversity measures and their application to thinning
-
Banfield, R.E., Hall, L.a., Bowyer, K.W., Kegelmeyer, W.P.: Ensemble diversity measures and their application to thinning. Information Fusion 6 (2005) 49-62
-
(2005)
Information Fusion
, vol.6
, pp. 49-62
-
-
Banfield, R.E.1
Hall, L.A.2
Bowyer, K.W.3
Kegelmeyer, W.P.4
-
15
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization
-
Dietterich, T.: An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization. Machine Learning 40 (2000) 139-157
-
(2000)
Machine Learning
, vol.40
, pp. 139-157
-
-
Dietterich, T.1
-
16
-
-
37249060650
-
On the performance-diversity relationship for majority voting in classifier ensembles
-
J. Kittler, F. Roli, and M. Haindl, eds, V, Springer
-
Chung, Y.S., Hsu, D.F., Tang, C.Y.: On the performance-diversity relationship for majority voting in classifier ensembles, in Multiple Classifier Systems, Lecture Notes in Computer Science, J. Kittler, F. Roli, and M. Haindl, eds, V. 4472, Springer (2007), 407-420.
-
(2007)
Multiple Classifier Systems, Lecture Notes in Computer Science
, vol.4472
, pp. 407-420
-
-
Chung, Y.S.1
Hsu, D.F.2
Tang, C.Y.3
-
17
-
-
84956988905
-
-
Ruta, D., Gabrys, B.: Application of the evolutionary algorithms for classifier selection in multiple classifier systems with majority voting. In: Proc. Second International Workshop on. Multiple Classifier Systems. 2096 of Lecture Notes in Computer Science., Springer-Verlag (2001) 399-408
-
Ruta, D., Gabrys, B.: Application of the evolutionary algorithms for classifier selection in multiple classifier systems with majority voting. In: Proc. Second International Workshop on. Multiple Classifier Systems. Volume 2096 of Lecture Notes in Computer Science., Springer-Verlag (2001) 399-408
-
-
-
-
18
-
-
0035478854
-
Random forests
-
Breiman, L.: Random forests. Machine Learning 45 (2001) 5-32
-
(2001)
Machine Learning
, vol.45
, pp. 5-32
-
-
Breiman, L.1
|