-
1
-
-
48249090455
-
Semiclassical scattering amplitude at the maximum point of the potential
-
1-2
-
I. Alexandrova J.-F. Bony T. Ramond 2008 Semiclassical scattering amplitude at the maximum point of the potential Asymptotic Analysis 58 1-2 57 125
-
(2008)
Asymptotic Analysis
, vol.58
, pp. 57-125
-
-
Alexandrova, I.1
Bony, J.-F.2
Ramond, T.3
-
2
-
-
0003288140
-
0 -groups, commutator methods and spectral theory of N-body Hamiltonians
-
Basel-Boston: Birkhäuser Verlag
-
0 -groups, commutator methods and spectral theory of N-body Hamiltonians, Progress in Mathematics, Vol. 135, Basel-Boston: Birkhäuser Verlag, 1996
-
(1996)
Progress in Mathematics
, vol.135
-
-
Amrein, W.1
Boutet De Monvel, A.2
Georgescu, V.3
-
5
-
-
33749992424
-
Uniform decay of local energy and the semi-linear wave equation on Schwarzschild space
-
2
-
P. Blue J. Sterbenz 2006 Uniform decay of local energy and the semi-linear wave equation on Schwarzschild space Commun. Math. Phys. 268 2 481 504
-
(2006)
Commun. Math. Phys.
, vol.268
, pp. 481-504
-
-
Blue, P.1
Sterbenz, J.2
-
6
-
-
2142824978
-
Microlocalization of resonant states and estimates of the residue of the scattering amplitude
-
2
-
J.-F. Bony L. Michel 2004 Microlocalization of resonant states and estimates of the residue of the scattering amplitude Commun. Math. Phys. 246 2 375 402
-
(2004)
Commun. Math. Phys.
, vol.246
, pp. 375-402
-
-
Bony, J.-F.1
Michel, L.2
-
7
-
-
3142714420
-
Smoothing effect for Schrödinger boundary value problems
-
2
-
N. Burq 2004 Smoothing effect for Schrödinger boundary value problems Duke Math. J. 123 2 403 427
-
(2004)
Duke Math. J.
, vol.123
, pp. 403-427
-
-
Burq, N.1
-
8
-
-
0035537365
-
Resonance expansions in semi-classical propagation
-
1
-
N. Burq M. Zworski 2001 Resonance expansions in semi-classical propagation Commun. Math. Phys. 223 1 1 12
-
(2001)
Commun. Math. Phys.
, vol.223
, pp. 1-12
-
-
Burq, N.1
Zworski, M.2
-
9
-
-
17744379966
-
The mathematical theory of black holes
-
The Clarendon Press, Oxford: Oxford University Press
-
Chandrasekhar, S.: The mathematical theory of black holes. International Series of Monographs on Physics, Vol. 69, The Clarendon Press, Oxford: Oxford University Press, 1992
-
(1992)
International Series of Monographs on Physics
, vol.69
-
-
Chandrasekhar, S.1
-
10
-
-
0034349028
-
Resonance wave expansions: Two hyperbolic examples
-
2
-
T. Christiansen M. Zworski 2000 Resonance wave expansions: two hyperbolic examples Commun. Math. Phys. 212 2 323 336
-
(2000)
Commun. Math. Phys.
, vol.212
, pp. 323-336
-
-
Christiansen, T.1
Zworski, M.2
-
11
-
-
0003333181
-
The global nonlinear stability of the Minkowski space
-
Princeton, NJ: Princeton University Press
-
Christodoulou, D., Klainerman, S.: The global nonlinear stability of the Minkowski space. Princeton Mathematical Series, Vol. 41, Princeton, NJ: Princeton University Press, 1993
-
(1993)
Princeton Mathematical Series
, vol.41
-
-
Christodoulou, D.1
Klainerman, S.2
-
12
-
-
26444568141
-
A proof of Price's law for the collapse of a self-gravitating scalar field
-
2
-
M. Dafermos I. Rodnianski 2005 A proof of Price's law for the collapse of a self-gravitating scalar field Invent. Math. 162 2 381 457
-
(2005)
Invent. Math.
, vol.162
, pp. 381-457
-
-
Dafermos, M.1
Rodnianski, I.2
-
14
-
-
24144449996
-
Meromorphic properties of the resolvent on asymptotically hyperbolic manifolds
-
Guillarmou, C.: Meromorphic properties of the resolvent on asymptotically hyperbolic manifolds. Duke Math. J. 129(1), 1-37 (2005)
-
(2005)
Duke Math. J.
, vol.129
, Issue.1
, pp. 1-37
-
-
Guillarmou, C.1
-
15
-
-
84972552788
-
Decay of solutions of the wave equation in the exterior of two convex obstacles
-
3
-
M. Ikawa 1982 Decay of solutions of the wave equation in the exterior of two convex obstacles Osaka J. Math. 19 3 459 509
-
(1982)
Osaka J. Math.
, vol.19
, pp. 459-509
-
-
Ikawa, M.1
-
16
-
-
0041110085
-
Scattering theory
-
Second ed. With appendices by C. Morawetz and G. Schmidt London-New York: Academic Press Inc.
-
Lax, P., Phillips, R.: Scattering theory, Second ed. With appendices by C. Morawetz and G. Schmidt Pure and Applied Mathematics, Vol. 26, London-New York: Academic Press Inc., 1989
-
(1989)
Pure and Applied Mathematics
, vol.26
-
-
Lax, P.1
Phillips, R.2
-
17
-
-
0036025585
-
Resonance free domains for non globally analytic potentials
-
4
-
A. Martinez 2002 Resonance free domains for non globally analytic potentials Ann. Henri Poincaré 3 4 739 756
-
(2002)
Ann. Henri Poincaré
, vol.3
, pp. 739-756
-
-
Martinez, A.1
-
18
-
-
0001189870
-
Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature
-
2
-
R. Mazzeo R. Melrose 1987 Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature J. Funct. Anal. 75 2 260 310
-
(1987)
J. Funct. Anal.
, vol.75
, pp. 260-310
-
-
Mazzeo, R.1
Melrose, R.2
-
20
-
-
33846062287
-
Absence of singular continuous spectrum for certain selfadjoint operators
-
3
-
E. Mourre 1980 Absence of singular continuous spectrum for certain selfadjoint operators Commun. Math. Phys. 78 3 391 408
-
(1980)
Commun. Math. Phys.
, vol.78
, pp. 391-408
-
-
Mourre, E.1
-
21
-
-
0346899470
-
Resonance expansions of propagators in the presence of potential barriers
-
1
-
S. Nakamura P. Stefanov M. Zworski 2003 Resonance expansions of propagators in the presence of potential barriers J. Funct. Anal. 205 1 180 205
-
(2003)
J. Funct. Anal.
, vol.205
, pp. 180-205
-
-
Nakamura, S.1
Stefanov, P.2
Zworski, M.3
-
22
-
-
84981752412
-
Solutions of the wave equation with localized energy
-
J. Ralston 1969 Solutions of the wave equation with localized energy Commun. Pure Appl. Math. 22 807 823
-
(1969)
Commun. Pure Appl. Math.
, vol.22
, pp. 807-823
-
-
Ralston, J.1
-
25
-
-
0031539570
-
Distribution of resonances for spherical black holes
-
1
-
A. Sá Barreto M. Zworski 1997 Distribution of resonances for spherical black holes Math. Res. Lett. 4 1 103 121
-
(1997)
Math. Res. Lett.
, vol.4
, pp. 103-121
-
-
Sá Barreto, A.1
Zworski, M.2
-
26
-
-
0005546811
-
Semiclassical resonances generated by nondegenerate critical points
-
Pseudodifferential operators (Oberwolfach, 1986) Berlin-Heidelberg-New York: Springer
-
Sjöstrand, J.: Semiclassical resonances generated by nondegenerate critical points. In: Pseudodifferential operators (Oberwolfach, 1986), Lecture Notes in Math., Vol. 1256, Berlin-Heidelberg-New York: Springer, 1987, pp. 402-429
-
(1987)
Lecture Notes in Math.
, vol.1256
, pp. 402-429
-
-
Sjöstrand, J.1
-
27
-
-
0001047998
-
A trace formula and review of some estimates for resonances, Microlocal analysis and spectral theory (Lucca, 1996)
-
Dordrecht: Kluwer Acad. Publ.
-
Sjöstrand, J.: A trace formula and review of some estimates for resonances, Microlocal analysis and spectral theory (Lucca, 1996), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 490, Dordrecht: Kluwer Acad. Publ., 1997, pp. 377-437
-
(1997)
NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.
, vol.490
, pp. 377-437
-
-
Sjöstrand, J.1
-
28
-
-
33751083232
-
-
Preprint available on
-
Sjöstrand, J.: Lectures on resonances. Preprint available on http://www.math.polytechnique.fr/∼sjoestrand, 2007, pp. 1-169
-
(2007)
Lectures on Resonances
, pp. 1-169
-
-
Sjöstrand, J.1
-
29
-
-
84968505435
-
Complex scaling and the distribution of scattering poles
-
4
-
J. Sjöstrand M. Zworski 1991 Complex scaling and the distribution of scattering poles J. Amer. Math. Soc. 4 4 729 769
-
(1991)
J. Amer. Math. Soc.
, vol.4
, pp. 729-769
-
-
Sjöstrand, J.1
Zworski, M.2
-
30
-
-
0032219326
-
From quasimodes to resonances
-
3
-
S.-H. Tang M. Zworski 1998 From quasimodes to resonances Math. Res. Lett. 5 3 261 272
-
(1998)
Math. Res. Lett.
, vol.5
, pp. 261-272
-
-
Tang, S.-H.1
Zworski, M.2
-
31
-
-
0034375059
-
Resonance expansions of scattered waves
-
10
-
S.-H. Tang M. Zworski 2000 Resonance expansions of scattered waves Comm. Pure Appl. Math. 53 10 1305 1334
-
(2000)
Comm. Pure Appl. Math.
, vol.53
, pp. 1305-1334
-
-
Tang, S.-H.1
Zworski, M.2
-
34
-
-
0033473946
-
Dimension of the limit set and the density of resonances for convex co-compact hyperbolic surfaces
-
2
-
M. Zworski 1999 Dimension of the limit set and the density of resonances for convex co-compact hyperbolic surfaces Invent. Math. 136 2 353 409
-
(1999)
Invent. Math.
, vol.136
, pp. 353-409
-
-
Zworski, M.1
|