메뉴 건너뛰기




Volumn , Issue , 2007, Pages 58-59

A quantitative exploration of efficacy of gland morphology in prostate cancer grading

Author keywords

[No Author keywords available]

Indexed keywords

DIMENSIONALITY REDUCTION; GRADING; MORPHOLOGY; SUPPORT VECTOR MACHINES; TISSUE; TISSUE ENGINEERING; UROLOGY; VECTOR SPACES;

EID: 48749115034     PISSN: 1071121X     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/NEBC.2007.4413278     Document Type: Conference Paper
Times cited : (15)

References (5)
  • 1
    • 20444421889 scopus 로고    scopus 로고
    • Gleason grading of prostate cancer in needle biopsies or radical prostatectomy specimens
    • Montironi, et al., "Gleason grading of prostate cancer in needle biopsies or radical prostatectomy specimens," BJU Int., vol. 95[8], pp. 1146-1152, 2005.
    • (2005) BJU Int , vol.95 , Issue.8 , pp. 1146-1152
    • Montironi1
  • 2
    • 48749100268 scopus 로고    scopus 로고
    • Automated grading of prostate cancer using architectural and textural image features
    • Doyle, et al., "Automated grading of prostate cancer using architectural and textural image features," IEEE ISBI, 2007.
    • (2007) IEEE ISBI
    • Doyle1
  • 3
    • 24644441054 scopus 로고    scopus 로고
    • Level set evolution without re-initialization
    • Li, et al., "Level set evolution without re-initialization" IEEE CVPR, vol.1, pp. 430-436, 2005.
    • (2005) IEEE CVPR , vol.1 , pp. 430-436
    • Li1
  • 4
    • 85075951328 scopus 로고
    • Nuclear feature extraction for breast tumor diagnosis
    • Street, et al., "Nuclear feature extraction for breast tumor diagnosis." SPIE Elec. Imag., pp. 861-70, 1993.
    • (1993) SPIE Elec. Imag , pp. 861-870
    • Street1
  • 5
    • 33744803217 scopus 로고    scopus 로고
    • Graph embedding to improve supervised classification and novel class detection
    • Madabhushi, et al., "Graph embedding to improve supervised classification and novel class detection", MICCAI, pp. 729-37, 2005.
    • (2005) MICCAI , pp. 729-737
    • Madabhushi1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.