메뉴 건너뛰기




Volumn 35, Issue 4, 2008, Pages 701-722

Neural networks and genetic algorithms as forecasting tools: A case study on German regions

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL NEURAL NETWORK; COMPUTER AIDED DESIGN; DATA SET; EMPLOYMENT; FORECASTING METHOD; GENETIC ALGORITHM; OPTIMIZATION;

EID: 48749110009     PISSN: 02658135     EISSN: None     Source Type: Journal    
DOI: 10.1068/b3101     Document Type: Article
Times cited : (14)

References (45)
  • 1
    • 84881675558 scopus 로고    scopus 로고
    • Evolution of regional employment in Germany: Forecast 2001 to 2010
    • Eds A Reggiani, P Nijkamp (Edward Elgar, Cheltenham, Glos) pp
    • Bade F-J, 2006, "Evolution of regional employment in Germany: forecast 2001 to 2010", in Spatial Dynamics, Networks and Modelling Eds A Reggiani, P Nijkamp (Edward Elgar, Cheltenham, Glos) pp 293-318
    • (2006) Spatial Dynamics, Networks and Modelling , pp. 293-318
    • Bade, F.-J.1
  • 2
    • 0034288854 scopus 로고    scopus 로고
    • Automatic neural network modelling for univariate time series
    • Balkin S D, Ord J K, 2000, "Automatic neural network modelling for univariate time series" International Journal of Forecasting 16 509-515
    • (2000) International Journal of Forecasting , vol.16 , pp. 509-515
    • Balkin, S.D.1    Ord, J.K.2
  • 3
    • 35348947512 scopus 로고    scopus 로고
    • Convergence in West German regional unemployment rates
    • forthcoming
    • Bayer C, Juessen F, 2007, "Convergence in West German regional unemployment rates" The German Economic Review (forthcoming)
    • (2007) The German Economic Review
    • Bayer, C.1    Juessen, F.2
  • 5
    • 0035036064 scopus 로고    scopus 로고
    • Forecasting regional employment with the ENTROP method
    • Blien U, Tassinopoulos A, 2001, "Forecasting regional employment with the ENTROP method" Regional Studies 35 113-124
    • (2001) Regional Studies , vol.35 , pp. 113-124
    • Blien, U.1    Tassinopoulos, A.2
  • 8
    • 84972539015 scopus 로고
    • Neural networks: A review from a statistical perspective
    • Cheng B, Titterington D M, 1994, "Neural networks: a review from a statistical perspective" Statistical Science 9(1) 2-30
    • (1994) Statistical Science , vol.9 , Issue.1 , pp. 2-30
    • Cheng, B.1    Titterington, D.M.2
  • 9
    • 0038720442 scopus 로고
    • Cheshire Engineering Corporation, Cheshire Engineering Corporation, Pasadena, CA
    • Cheshire Engineering Corporation, 1994 Neuralyst User's Guide (Cheshire Engineering Corporation, Pasadena, CA)
    • (1994) Neuralyst User's Guide
  • 10
    • 0013445438 scopus 로고
    • Principles for examining predictive validity: The case of information systems spending forecasts
    • Collopy F, Adya M, Armstrong J S, 1994, "Principles for examining predictive validity: the case of information systems spending forecasts" Information Systems Research 5 170-179
    • (1994) Information Systems Research , vol.5 , pp. 170-179
    • Collopy, F.1    Adya, M.2    Armstrong, J.S.3
  • 11
    • 0029473580 scopus 로고
    • Regional labour market dynamics in Europe
    • Decressin J, Fatás A, 1995, "Regional labour market dynamics in Europe" European Economic Review 39 1627-1655
    • (1995) European Economic Review , vol.39 , pp. 1627-1655
    • Decressin, J.1    Fatás, A.2
  • 13
    • 85082577965 scopus 로고    scopus 로고
    • Computational neural networks: An attractive class of mathematical models for transportation research
    • Eds V Himanen, P Nijkamp, A Reggiani (Ashgate, Aldershot, Hants) pp
    • Fischer M M, 1998, "Computational neural networks: an attractive class of mathematical models for transportation research", in Neural Networks in Transport Applications Eds V Himanen, P Nijkamp, A Reggiani (Ashgate, Aldershot, Hants) pp 3-20
    • (1998) Neural Networks in Transport Applications , pp. 3-20
    • Fischer, M.M.1
  • 14
    • 0012672820 scopus 로고    scopus 로고
    • Methodological challenges in neural spatial interaction modelling: The issue of model selection
    • Ed. A Reggiani (Springer, Berlin) pp
    • Fischer M M, 2000, "Methodological challenges in neural spatial interaction modelling: the issue of model selection", in Spatial Economic Science. New Frontiers in Theory and Methodology Ed. A Reggiani (Springer, Berlin) pp 89-101
    • (2000) Spatial Economic Science. New Frontiers in Theory and Methodology , pp. 89-101
    • Fischer, M.M.1
  • 15
    • 17844363062 scopus 로고    scopus 로고
    • Computational neural networks - tools for spatial data analysis
    • Eds M M Fischer, Y Leung (Springer, Berlin) pp
    • Fischer M M, 2001a, "Computational neural networks - tools for spatial data analysis", in GeoComputational Modelling: Techniques and Applications Eds M M Fischer, Y Leung (Springer, Berlin) pp 15-34
    • (2001) GeoComputational Modelling: Techniques and Applications , pp. 15-34
    • Fischer, M.M.1
  • 16
    • 32744469304 scopus 로고    scopus 로고
    • Central issues in neural spatial interaction modeling: The model selection and the parameter estimation problem
    • Eds M Gastaldi, A Reggiani (Ashgate, Aldershot, Hants) pp
    • Fischer M M, 2001b, "Central issues in neural spatial interaction modeling: the model selection and the parameter estimation problem", in New Analytical Advances in Transportation and Spatial Dynamics (Eds M Gastaldi, A Reggiani (Ashgate, Aldershot, Hants) pp 3-19
    • (2001) New Analytical Advances in Transportation and Spatial Dynamics , pp. 3-19
    • Fischer, M.M.1
  • 17
    • 0031668111 scopus 로고    scopus 로고
    • A genetic-algorithms based evolutionary computational neural network for modelling spatial interaction data
    • Fischer M M, Leung Y, 1998, "A genetic-algorithms based evolutionary computational neural network for modelling spatial interaction data" The Annals of Regional Science 32 437-458
    • (1998) The Annals of Regional Science , vol.32 , pp. 437-458
    • Fischer, M.M.1    Leung, Y.2
  • 22
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective computational abilities
    • Hopfield J J, 1982, "Neural networks and physical systems with emergent collective computational abilities" Proceedings of the National Academy of Sciences 79 2554-2558
    • (1982) Proceedings of the National Academy of Sciences , vol.79 , pp. 2554-2558
    • Hopfield, J.J.1
  • 23
    • 0003559593 scopus 로고    scopus 로고
    • Cambridge University Press, Cambridge
    • Hsiao C, 2003 Analysis of Panel Data (Cambridge University Press, Cambridge)
    • (2003) Analysis of Panel Data
    • Hsiao, C.1
  • 25
    • 84948516717 scopus 로고
    • Artificial neural networks: An econometric perspective
    • Kuan C-M, White H, 1994, "Artificial neural networks: an econometric perspective" Econometric Reviews 13 1-91
    • (1994) Econometric Reviews , vol.13 , pp. 1-91
    • Kuan, C.-M.1    White, H.2
  • 26
    • 85021340683 scopus 로고    scopus 로고
    • Lapedes A S, Farber R M, 1987, Nonlinear signal processing using neural networks: prediction and system modelling, LA-UR-87-2662, Los Alamos National Laboratory, Los Alamos
    • Lapedes A S, Farber R M, 1987, "Nonlinear signal processing using neural networks: prediction and system modelling", LA-UR-87-2662, Los Alamos National Laboratory, Los Alamos
  • 27
    • 85021352407 scopus 로고    scopus 로고
    • Lehmann E L, 1998 Nonparametrics: Statistical Methods Based on Ranks 1st revised edition (Prentice-Hall, Englewood Cliffs, NJ), originally published in 1976 by McGraw-Hill
    • Lehmann E L, 1998 Nonparametrics: Statistical Methods Based on Ranks 1st revised edition (Prentice-Hall, Englewood Cliffs, NJ), originally published in 1976 by McGraw-Hill
  • 29
    • 0032043525 scopus 로고    scopus 로고
    • The effect of sample size and variability of data on the comparative performance of artificial neural networks and regression
    • Markham I S, Rakes T R, 1998, "The effect of sample size and variability of data on the comparative performance of artificial neural networks and regression" Computers and Operations Research 25 251-263
    • (1998) Computers and Operations Research , vol.25 , pp. 251-263
    • Markham, I.S.1    Rakes, T.R.2
  • 30
    • 0036855813 scopus 로고    scopus 로고
    • Forecasting daily foreign exchange rates using genetically optimized neural networks
    • Nag A K, Mitra A, 2002, "Forecasting daily foreign exchange rates using genetically optimized neural networks" Journal of Forecasting 21 501-511
    • (2002) Journal of Forecasting , vol.21 , pp. 501-511
    • Nag, A.K.1    Mitra, A.2
  • 31
    • 85021354875 scopus 로고    scopus 로고
    • Neural networks for cross-sectional employment forecasts: A comparison of model specifications for Germany
    • paper presented at the, Volos; available from the author
    • Patuelli R, Reggiani A, Nijkamp P, Blien U, 2006, "Neural networks for cross-sectional employment forecasts: a comparison of model specifications for Germany", paper presented at the 46th Congress of the European Regional Science Association, Volos; available from the author
    • (2006) 46th Congress of the European Regional Science Association
    • Patuelli, R.1    Reggiani, A.2    Nijkamp, P.3    Blien, U.4
  • 36
    • 85021318949 scopus 로고    scopus 로고
    • Stock J H, Watson M W, 1998, A comparison of linear and nonlinear univariate models for forecasting macroeconomic time series, WT 6607, National Bureau of Economic Research, Cambridge, MA
    • Stock J H, Watson M W, 1998, "A comparison of linear and nonlinear univariate models for forecasting macroeconomic time series", WT 6607, National Bureau of Economic Research, Cambridge, MA
  • 37
    • 0031329532 scopus 로고    scopus 로고
    • A model selection approach to real-time macroeconomic forecasting using linear models and artificial neural networks
    • Swanson N R, White H, 1997a, "A model selection approach to real-time macroeconomic forecasting using linear models and artificial neural networks" The Review of Economics and Statistics 79 540-550
    • (1997) The Review of Economics and Statistics , vol.79 , pp. 540-550
    • Swanson, N.R.1    White, H.2
  • 38
    • 0031521391 scopus 로고    scopus 로고
    • Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models
    • Swanson N R, White H, 1997b, "Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models" International Journal of Forecasting 13 439-461
    • (1997) International Journal of Forecasting , vol.13 , pp. 439-461
    • Swanson, N.R.1    White, H.2
  • 39
    • 0002576088 scopus 로고    scopus 로고
    • Neural network forecasting of Canadian GDP growth
    • Tkacz G, 2001, "Neural network forecasting of Canadian GDP growth" International Journal of Forecasting 17 57-69
    • (2001) International Journal of Forecasting , vol.17 , pp. 57-69
    • Tkacz, G.1
  • 40
    • 48749126647 scopus 로고    scopus 로고
    • Neural network approaches to capture temporal information
    • number, Springer, Secaucus, NJ pp
    • Van Veelen M, Nijhuis J, Spaanenburg B, 2000, "Neural network approaches to capture temporal information", in AIP Conference Proceedings number 517 (Springer, Secaucus, NJ) pp 361-371
    • (2000) AIP Conference Proceedings , vol.517 , pp. 361-371
    • Van Veelen, M.1    Nijhuis, J.2    Spaanenburg, B.3
  • 44
    • 0035480297 scopus 로고    scopus 로고
    • An investigation of neural networks for linear time-series forecasting
    • Zhang G P, 2001, "An investigation of neural networks for linear time-series forecasting" Computers and Operations Research 28 1183-1202
    • (2001) Computers and Operations Research , vol.28 , pp. 1183-1202
    • Zhang, G.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.