메뉴 건너뛰기




Volumn 1, Issue , 2007, Pages 231-238

On portfolios for backtracking search in the presence of deadlines

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; BOOLEAN FUNCTIONS; CONSTRAINT THEORY; CYBERNETICS; SCHEDULING ALGORITHMS;

EID: 48649092353     PISSN: 10823409     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICTAI.2007.38     Document Type: Conference Paper
Times cited : (2)

References (26)
  • 1
    • 36349013336 scopus 로고    scopus 로고
    • Constraint propagation
    • F. Rossi, P. van Beek, and T. Walsh, editors, chapter 3. Elsevier
    • C. Bessiere. Constraint propagation. In F. Rossi, P. van Beek, and T. Walsh, editors, Handbook of Constraint Programming, chapter 3. Elsevier, 2006.
    • (2006) Handbook of Constraint Programming
    • Bessiere, C.1
  • 2
    • 33745197794 scopus 로고    scopus 로고
    • Applying machine learning to low-knowledge control of optimization algorithms
    • T. Carchrae and J. C. Beck. Applying machine learning to low-knowledge control of optimization algorithms. Computational Intelligence, 21:372-387, 2005.
    • (2005) Computational Intelligence , vol.21 , pp. 372-387
    • Carchrae, T.1    Beck, J.C.2
  • 3
    • 84919401135 scopus 로고
    • A machine program for theorem-proving
    • M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving. Comm. ACM, 5:394-397, 1962.
    • (1962) Comm. ACM , vol.5 , pp. 394-397
    • Davis, M.1    Logemann, G.2    Loveland, D.3
  • 4
    • 27344453540 scopus 로고    scopus 로고
    • Optimal schedules for parallelizing anytime algorithms: The case of shared resources
    • L. Finkelstein, S. Markovitch, and E. Rivlin. Optimal schedules for parallelizing anytime algorithms: The case of shared resources. J. of AI Research, 19:73-138, 2003.
    • (2003) J. of AI Research , vol.19 , pp. 73-138
    • Finkelstein, L.1    Markovitch, S.2    Rivlin, E.3
  • 7
    • 0000260998 scopus 로고
    • Backtrack programming
    • S. Golomb and L. Baumert. Backtrack programming. J. ACM, 12:516-524, 1965.
    • (1965) J. ACM , vol.12 , pp. 516-524
    • Golomb, S.1    Baumert, L.2
  • 9
    • 0035250831 scopus 로고    scopus 로고
    • Algorithm portfolios
    • C. Gomes and B. Selman. Algorithm portfolios. Artif. Intell., 126:43-62, 2001.
    • (2001) Artif. Intell , vol.126 , pp. 43-62
    • Gomes, C.1    Selman, B.2
  • 11
    • 0034140167 scopus 로고    scopus 로고
    • Heavy-tailed phenomena in satisfiability and constraint satisfaction problems
    • C. Gomes, B. Selman, N. Crato, and H. Kautz. Heavy-tailed phenomena in satisfiability and constraint satisfaction problems. J. of Automated Reasoning, 24:67-100, 2000.
    • (2000) J. of Automated Reasoning , vol.24 , pp. 67-100
    • Gomes, C.1    Selman, B.2    Crato, N.3    Kautz, H.4
  • 13
    • 85017348041 scopus 로고    scopus 로고
    • Learning techniques for automatic algorithm portfolio selection
    • Valencia, Spain
    • A. Guerri and M. Milano. Learning techniques for automatic algorithm portfolio selection. In Proc. of the 16th European Conf. on AI, pages 475-479, Valencia, Spain, 2004.
    • (2004) Proc. of the 16th European Conf. on AI , pp. 475-479
    • Guerri, A.1    Milano, M.2
  • 15
    • 0028576760 scopus 로고
    • Expected gains from parallelizing constraint solving for hard problems
    • Seattle
    • T. Hogg and C. P. Williams. Expected gains from parallelizing constraint solving for hard problems. In Proc. of the Twelfth National Conf. on AI, pages 331-336, Seattle, 1994.
    • (1994) Proc. of the Twelfth National Conf. on AI , pp. 331-336
    • Hogg, T.1    Williams, C.P.2
  • 17
    • 0031035643 scopus 로고    scopus 로고
    • An economics approach to hard computational problems
    • B. A. Huberman, R. M. Lukose, and T. Hogg. An economics approach to hard computational problems. Science, 275:51-54, 1997.
    • (1997) Science , vol.275 , pp. 51-54
    • Huberman, B.A.1    Lukose, R.M.2    Hogg, T.3
  • 22
    • 0031641796 scopus 로고    scopus 로고
    • Branch and bound algorithm selection by performance prediction
    • Madison, Wisconsin
    • L. Lobjois and M. Lemaitre. Branch and bound algorithm selection by performance prediction. In Proc. of the Fifteenth National Conf. on AI, pages 353-358, Madison, Wisconsin, 1998.
    • (1998) Proc. of the Fifteenth National Conf. on AI , pp. 353-358
    • Lobjois, L.1    Lemaitre, M.2
  • 24
    • 38149012432 scopus 로고    scopus 로고
    • Optimal basic block instruction scheduling for multiple-issue processors using constraint programming
    • Washington, DC
    • A. M. Malik, J. McInnes, and P. van Beek. Optimal basic block instruction scheduling for multiple-issue processors using constraint programming. In Proc. of the 18th IEEE Int'l Conf. on Tools with AI, pages 279-287, Washington, DC, 2006.
    • (2006) Proc. of the 18th IEEE Int'l Conf. on Tools with AI , pp. 279-287
    • Malik, A.M.1    McInnes, J.2    van Beek, P.3
  • 26
    • 48649087097 scopus 로고    scopus 로고
    • Backtracking search algorithms
    • F. Rossi, P. van Beek, and T. Walsh, editors, chapter 4. Elsevier
    • P. van Beek. Backtracking search algorithms. In F. Rossi, P. van Beek, and T. Walsh, editors, Handbook of Constraint Programming, chapter 4. Elsevier, 2006.
    • (2006) Handbook of Constraint Programming
    • van Beek, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.