메뉴 건너뛰기




Volumn 19, Issue 7, 2008, Pages 1683-1692

Efficient clustering algorithm based on local optimality of K-means

Author keywords

Clustering; Connectivity; Density based; K Means; K MeanSCAN

Indexed keywords

ALGORITHMS; CHLORINE COMPOUNDS; FLOW OF SOLIDS; GRAPH THEORY; LEARNING ALGORITHMS; OPTIMAL CONTROL SYSTEMS; SENSITIVITY ANALYSIS;

EID: 48549089676     PISSN: 10009825     EISSN: None     Source Type: Journal    
DOI: 10.3724/SP.J.1001.2008.01683     Document Type: Article
Times cited : (48)

References (8)
  • 2
    • 85170282443 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial database with noise
    • Simoudis E., Han J. and Fayyad U.M.(ed.), Portland: AAAI Press
    • Ester M, Kriegel HP, Sander J, Xu XW. A density-based algorithm for discovering clusters in large spatial database with noise. In: Simoudis E, Han J, Fayyad UM, eds. Proc. of the 2nd Int'l Conf. on Knowledge Discovery and Data Mining. Portland: AAAI Press, 1996. 226-231.
    • (1996) Proc. of the 2nd Int'l Conf. on Knowledge Discovery and Data Mining , pp. 226-231
    • Ester, M.1    Kriegel, H.P.2    Sander, J.3    Xu, X.W.4
  • 3
    • 0030157145 scopus 로고    scopus 로고
    • BIRCH: An efficient data clustering method for very large databases
    • Jagadish H.V. and Mumick I.S.(ed.), Montreal: ACM Press
    • Zhang T, Ramakrishnan R, Linvy M. BIRCH: An efficient data clustering method for very large databases. In: Jagadish HV, Mumick IS, eds. Proc. of the ACM SIGMOD Int'l Conf. on Management of Data. Montreal: ACM Press, 1996. 103-114.
    • (1996) Proc. of the ACM SIGMOD Int'l Conf. on Management of Data , pp. 103-114
    • Zhang, T.1    Ramakrishnan, R.2    Linvy, M.3
  • 4
    • 0032091595 scopus 로고    scopus 로고
    • CURE: An efficient clustering algorithm for large databases
    • Haas L.M. and Tiwary A.(ed.), New York: ACM Press
    • Guha S, Rastogi R, Shim K. CURE: An efficient clustering algorithm for large databases. In: Haas LM, Tiwary A, eds. Proc. of the ACM SIGMOD Int'l Conf. on Management of Data. New York: ACM Press, 1998. 73-84.
    • (1998) Proc. of the ACM SIGMOD Int'l Conf. on Management of Data , pp. 73-84
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 5
    • 0347172110 scopus 로고    scopus 로고
    • OPTICS: Ordering points to identify the clustering structure
    • Delis A., Faloutsos C. and Ghandeharizadeh S.(ed.), Philadelphia: ACM Press
    • Ankerst M, Breuning M, Kriegel HP, Sander J. OPTICS: Ordering points to identify the clustering structure. In: Delis A, Faloutsos C, Ghandeharizadeh S, eds. Proc. of the ACM SIGMOD Int'l Conf. on Management of Data. Philadelphia: ACM Press, 1999. 49-60.
    • (1999) Proc. of the ACM SIGMOD Int'l Conf. on Management of Data , pp. 49-60
    • Ankerst, M.1    Breuning, M.2    Kriegel, H.P.3    Sander, J.4
  • 6
    • 0032686723 scopus 로고    scopus 로고
    • CHAMELEON: A hierarchical clustering algorithm using dynamic modeling
    • Karypis G, Han EH, Kumar V. CHAMELEON: A hierarchical clustering algorithm using dynamic modeling. Computer, 1999, 32(8): 68-75.
    • (1999) Computer , vol.32 , Issue.8 , pp. 68-75
    • Karypis, G.1    Han, E.H.2    Kumar, V.3
  • 7
    • 0037410687 scopus 로고    scopus 로고
    • Choosing k for two-class nearest neighbour classifiers with unbalanced classes
    • Hand DJ, Vinciotti V. Choosing k for two-class nearest neighbour classifiers with unbalanced classes. Pattern Recognition Letters, 2003, 24(9): 1555-1562.
    • (2003) Pattern Recognition Letters , vol.24 , Issue.9 , pp. 1555-1562
    • Hand, D.J.1    Vinciotti, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.