메뉴 건너뛰기




Volumn 32, Issue 10, 2008, Pages 1229-1245

Forecasting vertical ground surface movement from shrinking/swelling soils with artificial neural networks

Author keywords

Artificial neural networks; Expansive soils; Shrink swell properties

Indexed keywords

ABILITY TESTING; ANCHORAGES (FOUNDATIONS); ARTIFICIAL INTELLIGENCE; BACKPROPAGATION; CLIMATOLOGY; ELECTRIC FAULT LOCATION; FINANCIAL DATA PROCESSING; FORECASTING; GROUNDWATER; LIGHTNING; MOISTURE DETERMINATION; OFFSHORE OIL WELL PRODUCTION; SOIL MECHANICS; SOIL MOISTURE; SOILS; SURFACE TESTING; TESTING; TIME SERIES ANALYSIS; UNDERWATER SOILS; WATER CONTENT;

EID: 48449105465     PISSN: 03639061     EISSN: 10969853     Source Type: Journal    
DOI: 10.1002/nag.666     Document Type: Article
Times cited : (7)

References (36)
  • 1
    • 34548571709 scopus 로고    scopus 로고
    • Expansive clay soil. A widespread and costly geohazard
    • October
    • Wray WK, Meyer KT. Expansive clay soil. A widespread and costly geohazard. Geo-Strata, Geo Institute of ASCE, vol. 5, October 2004; 24-28.
    • (2004) Geo-Strata, Geo Institute of ASCE , vol.5 , pp. 24-28
    • Wray, W.K.1    Meyer, K.T.2
  • 5
    • 0036887629 scopus 로고    scopus 로고
    • Engineering geological characteristics of expansive soils in China
    • Shi B, Jiang HT, Liu ZB, Fang HY. Engineering geological characteristics of expansive soils in China. Engineering Geology 2002; 67(1-2):63-71.
    • (2002) Engineering Geology , vol.67 , Issue.1-2 , pp. 63-71
    • Shi, B.1    Jiang, H.T.2    Liu, Z.B.3    Fang, H.Y.4
  • 6
    • 0346687495 scopus 로고    scopus 로고
    • Influence of mineralogy on swelling and consolidation of soils in eastern Saudi Arabia
    • Azam S. Influence of mineralogy on swelling and consolidation of soils in eastern Saudi Arabia. Canadian Geotechnical Journal 2003; 40(5):964-975.
    • (2003) Canadian Geotechnical Journal , vol.40 , Issue.5 , pp. 964-975
    • Azam, S.1
  • 7
    • 0000283403 scopus 로고
    • Interrelationships of loads, volume change, and layer thickness of soils to the behavior of engineering structures
    • Washington, DC
    • McDowell C. Interrelationships of loads, volume change, and layer thickness of soils to the behavior of engineering structures. Proceedings of the 35th Annual Meetings, Publication No. 426, Washington, DC, 1956; 754-772.
    • (1956) Proceedings of the 35th Annual Meetings, Publication No. 426 , pp. 754-772
    • McDowell, C.1
  • 14
    • 0004708589 scopus 로고
    • The Structural Analysis of Footings on Expansive Soil
    • No. 1. Kenneth W. G. Smith and Associates: Adelaide, South Australia
    • Mitchell PW. The Structural Analysis of Footings on Expansive Soil. Research Report No. 1. Kenneth W. G. Smith and Associates: Adelaide, South Australia, 1979.
    • (1979) Research Report
    • Mitchell, P.W.1
  • 15
    • 0028193610 scopus 로고
    • Characterization of aquifer properties using artificial neural networks: Neural kriging
    • Rizzo DM, Dougherty DE. Characterization of aquifer properties using artificial neural networks: neural kriging. Water Resources Research 1994; 30(2):483-497.
    • (1994) Water Resources Research , vol.30 , Issue.2 , pp. 483-497
    • Rizzo, D.M.1    Dougherty, D.E.2
  • 16
    • 37549060662 scopus 로고    scopus 로고
    • Stochastic simulation and spatial estimation with multiple data types using artificial neural networks
    • DOI: 10.1029/2006WR005509
    • Besaw LE, Rizzo DM. Stochastic simulation and spatial estimation with multiple data types using artificial neural networks. Water Resources Research 2007; DOI: 10.1029/2006WR005509.
    • (2007) Water Resources Research
    • Besaw, L.E.1    Rizzo, D.M.2
  • 17
    • 0029660470 scopus 로고    scopus 로고
    • Modeling water retention curves of sandy soils using neural networks
    • Schaap MG, Bouten W. Modeling water retention curves of sandy soils using neural networks. Water Resources Research 1996; 32(10):3033-3040.
    • (1996) Water Resources Research , vol.32 , Issue.10 , pp. 3033-3040
    • Schaap, M.G.1    Bouten, W.2
  • 18
    • 0032860604 scopus 로고    scopus 로고
    • Soil laboratory data interpretation using generalized regression neural network
    • Goh ATC. Soil laboratory data interpretation using generalized regression neural network. Civil Engineering and Environmental Systems 1999; 16:175-195.
    • (1999) Civil Engineering and Environmental Systems , vol.16 , pp. 175-195
    • Goh, A.T.C.1
  • 19
    • 0033502312 scopus 로고    scopus 로고
    • Appraising cone penetration test based liquefaction resistance evaluation methods: Artificial neural network approach
    • Juang CH, Chen CJX, Tien YM. Appraising cone penetration test based liquefaction resistance evaluation methods: artificial neural network approach. Canadian Geotechnical Journal 1999; 36(3):443-454.
    • (1999) Canadian Geotechnical Journal , vol.36 , Issue.3 , pp. 443-454
    • Juang, C.H.1    Chen, C.J.X.2    Tien, Y.M.3
  • 20
    • 0042324284 scopus 로고    scopus 로고
    • A neural network framework for mechanical behavior of unsaturated soils
    • Habibagahi G, Bamdad A. A neural network framework for mechanical behavior of unsaturated soils. Canadian Geotechnical Journal 2003; 40:684-693.
    • (2003) Canadian Geotechnical Journal , vol.40 , pp. 684-693
    • Habibagahi, G.1    Bamdad, A.2
  • 21
    • 0034433893 scopus 로고    scopus 로고
    • Swelling potential of Kansas soils: Modeling and validation using artificial neural network reliability approach
    • Najjar YM, Basheer IA, Ali HE, McReynolds RL. Swelling potential of Kansas soils: modeling and validation using artificial neural network reliability approach. Transportation Research Record 2000; 1736:141-147.
    • (2000) Transportation Research Record , vol.1736 , pp. 141-147
    • Najjar, Y.M.1    Basheer, I.A.2    Ali, H.E.3    McReynolds, R.L.4
  • 22
    • 0141974859 scopus 로고    scopus 로고
    • Modeling time dependent swell of clays using sequential artificial neural networks
    • Basma AA, Barakat SA, Omar M. Modeling time dependent swell of clays using sequential artificial neural networks. Environmental and Engineering Geoscience 2003; 9(3):279-288.
    • (2003) Environmental and Engineering Geoscience , vol.9 , Issue.3 , pp. 279-288
    • Basma, A.A.1    Barakat, S.A.2    Omar, M.3
  • 23
    • 0035044111 scopus 로고    scopus 로고
    • Adeli H. Neural networks in civil engineering: 1989-2000. Computer-Aided Civil and Infrastructure Engineering (Review Article) 2001; 16:126-142.
    • Adeli H. Neural networks in civil engineering: 1989-2000. Computer-Aided Civil and Infrastructure Engineering (Review Article) 2001; 16:126-142.
  • 24
    • 0000646059 scopus 로고
    • Learning internal representation by error propagation
    • MIT Press: Cambridge, MA
    • Rumelhart DE, Hinton E, Williams J. Learning internal representation by error propagation. Parallel Distributed Processing. MIT Press: Cambridge, MA, 1986; 318-362.
    • (1986) Parallel Distributed Processing , pp. 318-362
    • Rumelhart, D.E.1    Hinton, E.2    Williams, J.3
  • 26
    • 0020068152 scopus 로고
    • Self-organized formation of topologically correct feature maps
    • Kohonen T. Self-organized formation of topologically correct feature maps. Biological Cybernetics 1982; 43: 56-69.
    • (1982) Biological Cybernetics , vol.43 , pp. 56-69
    • Kohonen, T.1
  • 28
    • 0000621802 scopus 로고
    • Multivariable function interpolation and adaptive networks
    • Broomhead DS, Lowe D. Multivariable function interpolation and adaptive networks. Complex Systems 1988; 2:321-355.
    • (1988) Complex Systems , vol.2 , pp. 321-355
    • Broomhead, D.S.1    Lowe, D.2
  • 29
    • 0000672424 scopus 로고
    • Fast learning in networks of locally tuned processing units
    • Moody J, Darken C. Fast learning in networks of locally tuned processing units. Neural Computation 1989; 1:281-294.
    • (1989) Neural Computation , vol.1 , pp. 281-294
    • Moody, J.1    Darken, C.2
  • 30
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • Poggio T, Girosi F. Networks for approximation and learning. Proceedings of the IEEE, vol. 78, 1990; 1481-1496.
    • (1990) Proceedings of the IEEE , vol.78 , pp. 1481-1496
    • Poggio, T.1    Girosi, F.2
  • 32
    • 0023515080 scopus 로고
    • Counterpropagation networks
    • Hecht-Nielsen R. Counterpropagation networks. Applied Optics 1987; 26(23):4979-4984.
    • (1987) Applied Optics , vol.26 , Issue.23 , pp. 4979-4984
    • Hecht-Nielsen, R.1
  • 33
    • 0023834037 scopus 로고
    • Applications of counterpropagation networks
    • Hecht-Nielsen R. Applications of counterpropagation networks. Neural Networks 1988; 1:131-139.
    • (1988) Neural Networks , vol.1 , pp. 131-139
    • Hecht-Nielsen, R.1
  • 34
    • 48449086655 scopus 로고    scopus 로고
    • Caudill M. Part I: The view from now. Using Neural Networks. AI Expert. A Miller Freeman Publication, 1995.
    • Caudill M. Part I: The view from now. Using Neural Networks. AI Expert. A Miller Freeman Publication, 1995.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.