메뉴 건너뛰기




Volumn 1225, Issue , 2008, Pages 57-66

Classification of stimuli based on stimulus-response curves and their variability

Author keywords

Fisher information; Information theory; Noise; Response curve; Sensory neurons; Stimulus identification

Indexed keywords

ANALYTIC METHOD; ARTICLE; BRAIN DEPTH STIMULATION; BRAIN FUNCTION; MATHEMATICAL COMPUTING; NERVE POTENTIAL; NOISE; OLFACTORY NERVE; PRIORITY JOURNAL; RESPONSE VARIABLE; SENSORY NERVE CELL; SIGNAL TRANSDUCTION; STATISTICAL MODEL; STIMULUS RESPONSE;

EID: 48349118520     PISSN: 00068993     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.brainres.2008.04.058     Document Type: Article
Times cited : (9)

References (43)
  • 1
    • 17144406556 scopus 로고    scopus 로고
    • Difficulty of singularity in population coding
    • Amari S., and Nakahara H. Difficulty of singularity in population coding. Neural Comput. 17 (2005) 839-858
    • (2005) Neural Comput. , vol.17 , pp. 839-858
    • Amari, S.1    Nakahara, H.2
  • 2
    • 0036781312 scopus 로고    scopus 로고
    • Optimal short-term population coding: when Fisher information fails
    • Bethge M., Rotermund D., and Pawelzik K. Optimal short-term population coding: when Fisher information fails. Neural Comput. 14 (2002) 2317-2351
    • (2002) Neural Comput. , vol.14 , pp. 2317-2351
    • Bethge, M.1    Rotermund, D.2    Pawelzik, K.3
  • 3
    • 34247553854 scopus 로고    scopus 로고
    • Quantifying the information transmitted in a single stimulus
    • Bezzi M. Quantifying the information transmitted in a single stimulus. BioSystems 89 (2007) 4-9
    • (2007) BioSystems , vol.89 , pp. 4-9
    • Bezzi, M.1
  • 4
    • 0033334496 scopus 로고    scopus 로고
    • Information theory and neural coding
    • Borst A., and Theunissen F.E. Information theory and neural coding. Nature Neursoci. 2 (1999) 947-957
    • (1999) Nature Neursoci. , vol.2 , pp. 947-957
    • Borst, A.1    Theunissen, F.E.2
  • 5
    • 0032184953 scopus 로고    scopus 로고
    • Mutual information, Fisher information, and population coding
    • Brunel N., and Nadal J.-P. Mutual information, Fisher information, and population coding. Neural Comput. 10 (1998) 1731-1757
    • (1998) Neural Comput. , vol.10 , pp. 1731-1757
    • Brunel, N.1    Nadal, J.-P.2
  • 6
    • 0348108207 scopus 로고    scopus 로고
    • How much information is associated with a particular stimulus? Network: Comput
    • Butts D.A. How much information is associated with a particular stimulus? Network: Comput. Neural Syst. 14 (2003) 177-187
    • (2003) Neural Syst. , vol.14 , pp. 177-187
    • Butts, D.A.1
  • 7
    • 19344372492 scopus 로고    scopus 로고
    • Amplification of trial-to-trial response variability by neurons in visual cortex
    • Carandini M. Amplification of trial-to-trial response variability by neurons in visual cortex. PLoS Biology 2 (2004) 1483-1493
    • (2004) PLoS Biology , vol.2 , pp. 1483-1493
    • Carandini, M.1
  • 9
    • 0009525409 scopus 로고    scopus 로고
    • How to measure the information gained from one symbol
    • DeWeese M.R., and Meister M. How to measure the information gained from one symbol. Network 10 (1999) 325-340
    • (1999) Network , vol.10 , pp. 325-340
    • DeWeese, M.R.1    Meister, M.2
  • 13
    • 17044381400 scopus 로고    scopus 로고
    • Optimum signal in a simple neuronal model with signal-dependent noise
    • Greenwood P.E., and Lansky P. Optimum signal in a simple neuronal model with signal-dependent noise. Biol. Cybern. 92 (2005) 199-205
    • (2005) Biol. Cybern. , vol.92 , pp. 199-205
    • Greenwood, P.E.1    Lansky, P.2
  • 14
    • 34147127350 scopus 로고    scopus 로고
    • Information content in threshold data with non-Gaussian noise
    • Greenwood P.E., and Lansky P. Information content in threshold data with non-Gaussian noise. Fluct. Noise Letters 7 (2007) L79-L89
    • (2007) Fluct. Noise Letters , vol.7
    • Greenwood, P.E.1    Lansky, P.2
  • 15
    • 17544386468 scopus 로고    scopus 로고
    • Stochastic resonance enhances the electrosensory information available to paddlefish for prey capture
    • Greenwood P.E., Ward L.M., Russel D.F., Neiman A., and Moss F. Stochastic resonance enhances the electrosensory information available to paddlefish for prey capture. Phys. Rev. Lett. 84 (2000) 4773-4776
    • (2000) Phys. Rev. Lett. , vol.84 , pp. 4773-4776
    • Greenwood, P.E.1    Ward, L.M.2    Russel, D.F.3    Neiman, A.4    Moss, F.5
  • 16
    • 0036812467 scopus 로고    scopus 로고
    • Coding of periodic pulse stimulations in chemoreceptors
    • Krivan V., Lansky P., and Rospars J.-P. Coding of periodic pulse stimulations in chemoreceptors. BioSystems 67 (2002) 121-128
    • (2002) BioSystems , vol.67 , pp. 121-128
    • Krivan, V.1    Lansky, P.2    Rospars, J.-P.3
  • 17
    • 0035383987 scopus 로고    scopus 로고
    • Decoding first-spike latency: a likelihood approach
    • Jenison R.L. Decoding first-spike latency: a likelihood approach. Neurocomputers 38 (2001) 239-248
    • (2001) Neurocomputers , vol.38 , pp. 239-248
    • Jenison, R.L.1
  • 18
    • 0842324366 scopus 로고    scopus 로고
    • Optimal stimulus coding by neural populations using rate codes
    • Johnson D.H., and Ray W. Optimal stimulus coding by neural populations using rate codes. J. Comput. Neurosci. 16 (2004) 129-138
    • (2004) J. Comput. Neurosci. , vol.16 , pp. 129-138
    • Johnson, D.H.1    Ray, W.2
  • 19
    • 0031919573 scopus 로고    scopus 로고
    • Flux detectors versus concentration detectors: two types of chemoreceptors
    • Kaissling K.E. Flux detectors versus concentration detectors: two types of chemoreceptors. Chem. Senses 23 (1998) 99-111
    • (1998) Chem. Senses , vol.23 , pp. 99-111
    • Kaissling, K.E.1
  • 20
    • 4344639484 scopus 로고    scopus 로고
    • Dose-response relationships in an olfactory flux detector model revisited
    • Kaissling K.E., and Rospars J.-P. Dose-response relationships in an olfactory flux detector model revisited. Chem. Senses 29 (2004) 529-531
    • (2004) Chem. Senses , vol.29 , pp. 529-531
    • Kaissling, K.E.1    Rospars, J.-P.2
  • 22
    • 43249110822 scopus 로고    scopus 로고
    • Efficient olfactory coding in the pheromone receptor neuron of a moth
    • Kostal L., Lansky P., and Rospars J.-P. Efficient olfactory coding in the pheromone receptor neuron of a moth. PLoS Comput. Biology 4 (2008)
    • (2008) PLoS Comput. Biology , vol.4
    • Kostal, L.1    Lansky, P.2    Rospars, J.-P.3
  • 23
    • 34247644946 scopus 로고    scopus 로고
    • Inference of intrinsic spiking irregularity based on the Kullback-Leibler information
    • Koyama S., and Shinomoto S. Inference of intrinsic spiking irregularity based on the Kullback-Leibler information. BioSystems 89 (2007) 69-73
    • (2007) BioSystems , vol.89 , pp. 69-73
    • Koyama, S.1    Shinomoto, S.2
  • 24
    • 0027438596 scopus 로고
    • Coding of odor intensity
    • Lansky P., and Rospars J.-P. Coding of odor intensity. BioSystems 31 (1993) 15-38
    • (1993) BioSystems , vol.31 , pp. 15-38
    • Lansky, P.1    Rospars, J.-P.2
  • 25
    • 0034851356 scopus 로고    scopus 로고
    • Sensitivity and coding range in olfactory sensory neuron. Role of heterogeneity of receptors
    • Lansky P., and Getz W.M. Sensitivity and coding range in olfactory sensory neuron. Role of heterogeneity of receptors. Bull. Math. Biol. 63 (2001) 885-908
    • (2001) Bull. Math. Biol. , vol.63 , pp. 885-908
    • Lansky, P.1    Getz, W.M.2
  • 26
    • 23944516365 scopus 로고    scopus 로고
    • Optimal signal estimation in neuronal models
    • Lansky P., and Greenwood P.E. Optimal signal estimation in neuronal models. Neural Comput. 17 (2005) 2240-2257
    • (2005) Neural Comput. , vol.17 , pp. 2240-2257
    • Lansky, P.1    Greenwood, P.E.2
  • 27
    • 34147119338 scopus 로고    scopus 로고
    • Optimal signal in sensory neurons under extended rate coding concept
    • Lansky P., and Greenwood P.E. Optimal signal in sensory neurons under extended rate coding concept. BioSystems 89 (2007) 10-15
    • (2007) BioSystems , vol.89 , pp. 10-15
    • Lansky, P.1    Greenwood, P.E.2
  • 28
    • 34248531123 scopus 로고    scopus 로고
    • Optimum signal in a diffusion leaky integrate-and-fire neuronal model
    • Lansky P., Sacerdote L., and Zucca L. Optimum signal in a diffusion leaky integrate-and-fire neuronal model. Math. Biosci. 207 (2007) 261-274
    • (2007) Math. Biosci. , vol.207 , pp. 261-274
    • Lansky, P.1    Sacerdote, L.2    Zucca, L.3
  • 29
    • 0019620028 scopus 로고
    • A simple coding procedure enhances a neuron's information capacity
    • Laughlin S.B. A simple coding procedure enhances a neuron's information capacity. Z. Naturforsch. 36 (1981) 910-912
    • (1981) Z. Naturforsch. , vol.36 , pp. 910-912
    • Laughlin, S.B.1
  • 30
    • 0036212160 scopus 로고    scopus 로고
    • Efficient coding of natural sounds
    • Lewicki M. Efficient coding of natural sounds. Nat. Neurosci. 5 (2002) 356-363
    • (2002) Nat. Neurosci. , vol.5 , pp. 356-363
    • Lewicki, M.1
  • 31
    • 0036498502 scopus 로고    scopus 로고
    • Spontaneous and odour evoked activity in single avian olfactory bulb neurones
    • McKeegan D.E.F. Spontaneous and odour evoked activity in single avian olfactory bulb neurones. Brain Res. 929 (2002) 48-58
    • (2002) Brain Res. , vol.929 , pp. 48-58
    • McKeegan, D.E.F.1
  • 32
    • 0036779831 scopus 로고    scopus 로고
    • Information-geometric measure for neural spikes
    • Nakahara H., and Amari S. Information-geometric measure for neural spikes. Neural. Comput. 14 (2002) 2269-2316
    • (2002) Neural. Comput. , vol.14 , pp. 2269-2316
    • Nakahara, H.1    Amari, S.2
  • 33
    • 0036020094 scopus 로고    scopus 로고
    • Estimating auditory neuronal dynamic range using a fitted function
    • Nizami L. Estimating auditory neuronal dynamic range using a fitted function. Hearing Res. 167 (2002) 13-27
    • (2002) Hearing Res. , vol.167 , pp. 13-27
    • Nizami, L.1
  • 34
    • 0031126822 scopus 로고    scopus 로고
    • Auditory dynamic range derived from the mean rate-intensity function in the cat
    • Nizami L., and Schneider B. Auditory dynamic range derived from the mean rate-intensity function in the cat. Math. Biosci. 141 (1997) 1-28
    • (1997) Math. Biosci. , vol.141 , pp. 1-28
    • Nizami, L.1    Schneider, B.2
  • 36
    • 0342424732 scopus 로고    scopus 로고
    • Perireceptor and receptor events in olfaction. Comparison of concentration and flux detectors: a modeling study
    • Rospars J.-P., Krivan V., and Lansky P. Perireceptor and receptor events in olfaction. Comparison of concentration and flux detectors: a modeling study. Chem. Senses 25 (2000) 293-311
    • (2000) Chem. Senses , vol.25 , pp. 293-311
    • Rospars, J.-P.1    Krivan, V.2    Lansky, P.3
  • 37
    • 0141630351 scopus 로고    scopus 로고
    • Relation between stimulus intensity and response in frog olfactory receptor neurons in vivo
    • Rospars J.-P., Lansky P., Duchamp-Viret P., and Duchamp A. Relation between stimulus intensity and response in frog olfactory receptor neurons in vivo. Eur. J. Neurosci. 18 (2003) 1135-1154
    • (2003) Eur. J. Neurosci. , vol.18 , pp. 1135-1154
    • Rospars, J.-P.1    Lansky, P.2    Duchamp-Viret, P.3    Duchamp, A.4
  • 38
    • 34247617854 scopus 로고    scopus 로고
    • Modelling the early steps of transduction in insect olfactory receptor neurons
    • Rospars J.-P., Lucas P., and Coppey M. Modelling the early steps of transduction in insect olfactory receptor neurons. BioSystems 89 (2007) 101-109
    • (2007) BioSystems , vol.89 , pp. 101-109
    • Rospars, J.-P.1    Lucas, P.2    Coppey, M.3
  • 39
    • 0001586544 scopus 로고    scopus 로고
    • A single spike suffices: the simplest form of stochastic resonance in model neurons
    • Stemmler M. A single spike suffices: the simplest form of stochastic resonance in model neurons. Network 7 (1996) 687-716
    • (1996) Network , vol.7 , pp. 687-716
    • Stemmler, M.1
  • 40
    • 15544374419 scopus 로고    scopus 로고
    • Mechanisms determining the dynamic range of the bullfrog olfactory receptor cell
    • Tomaru A., and Kurahashi T. Mechanisms determining the dynamic range of the bullfrog olfactory receptor cell. J. Neurophysiol. 93 (2005) 1880-1888
    • (2005) J. Neurophysiol. , vol.93 , pp. 1880-1888
    • Tomaru, A.1    Kurahashi, T.2
  • 41
    • 0036134418 scopus 로고    scopus 로고
    • Representational accuracy of stochastic neural populations
    • Wilke S.D., and Eurich C.W. Representational accuracy of stochastic neural populations. Neural Comput. 14 (2002) 155-189
    • (2002) Neural Comput. , vol.14 , pp. 155-189
    • Wilke, S.D.1    Eurich, C.W.2
  • 42
    • 1242270645 scopus 로고    scopus 로고
    • Information processing in a neuron ensemble with the multiplicative correlation structure
    • Wu S., Amari S., and Nakahara H. Information processing in a neuron ensemble with the multiplicative correlation structure. Neural Netw. 17 (2004) 205-214
    • (2004) Neural Netw. , vol.17 , pp. 205-214
    • Wu, S.1    Amari, S.2    Nakahara, H.3
  • 43
    • 0032611075 scopus 로고    scopus 로고
    • Neuronal tuning: to sharpen or broaden?
    • Zhang K.C., and Sejnowski T.J. Neuronal tuning: to sharpen or broaden?. Neural Comput. 11 (1999) 75-84
    • (1999) Neural Comput. , vol.11 , pp. 75-84
    • Zhang, K.C.1    Sejnowski, T.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.