-
1
-
-
33746765643
-
Closed formula for the metric in the Hilbert space of a -symmetric model
-
Krejiík D, Bíla H and Znojil M 2006 Closed formula for the metric in the Hilbert space of a -symmetric model J. Phys. A: Math. Gen. 39 10143-53
-
(2006)
J. Phys. A: Math. Gen.
, vol.39
, Issue.32
, pp. 10143-10153
-
-
Krejiík, D.1
Bíla, H.2
Znojil, M.3
-
3
-
-
0000786142
-
Exponential decay and geometric aspect of transition probabilities in the adiabatic limit
-
Joye A, Kunz H and Ch Ed Pfister 1991 Exponential decay and geometric aspect of transition probabilities in the adiabatic limit Ann. Phys. 208 299-332
-
(1991)
Ann. Phys.
, vol.208
, Issue.2
, pp. 299-332
-
-
Joye, A.1
Kunz, H.2
Ed Pfister, C.3
-
4
-
-
0036770665
-
Non-self-adjoint differential operators
-
Davies E B 2002 Non-self-adjoint differential operators Bull. London Math. Soc. 34 513-32
-
(2002)
Bull. London Math. Soc.
, vol.34
, Issue.5
, pp. 513-532
-
-
Davies, E.B.1
-
5
-
-
11544339752
-
Real spectra in non-Hermitian Hamiltonians having symmetry
-
Bender C M and Boettcher P N 1998 Real spectra in non-Hermitian Hamiltonians having symmetry Phys. Rev. Lett. 80 5243-6
-
(1998)
Phys. Rev. Lett.
, vol.80
, Issue.24
, pp. 5243-5246
-
-
Bender, C.M.1
Boettcher, P.N.2
-
6
-
-
34547309949
-
Making sense of non-Hermitian Hamiltonians
-
Bender C M 2007 Making sense of non-Hermitian Hamiltonians Rep. Prog. Phys. 70 947-1018
-
(2007)
Rep. Prog. Phys.
, vol.70
, Issue.6
, pp. 947-1018
-
-
Bender, C.M.1
-
7
-
-
0001536576
-
Quasi-Hermitian operators in quantum mechanics and the variational principle
-
Scholtz F G, Geyer H B and Hahne F J W 1992 Quasi-Hermitian operators in quantum mechanics and the variational principle Ann. Phys. 213 74-101
-
(1992)
Ann. Phys.
, vol.213
, Issue.1
, pp. 74-101
-
-
Scholtz, F.G.1
Geyer, H.B.2
Hahne, F.J.W.3
-
8
-
-
0035981958
-
Pseudo-Hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian
-
Mostafazadeh A 2002 Pseudo-Hermiticity versus PT symmetry: the necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian J. Math. Phys. 43 205-14
-
(2002)
J. Math. Phys.
, vol.43
, Issue.1
, pp. 205-214
-
-
Mostafazadeh, A.1
-
9
-
-
0035981827
-
Pseudo-Hermiticity versus PT symmetry: II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum
-
Mostafazadeh A 2002 Pseudo-Hermiticity versus PT symmetry: II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum J. Math. Phys. 43 2814-6
-
(2002)
J. Math. Phys.
, vol.43
, Issue.5
, pp. 2814-2816
-
-
Mostafazadeh, A.1
-
10
-
-
0035981741
-
Pseudo-Hermiticity versus PT symmetry: III. Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries
-
Mostafazadeh A 2002 Pseudo-Hermiticity versus PT symmetry: III. Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries J. Math. Phys. 43 3944-51
-
(2002)
J. Math. Phys.
, vol.43
, Issue.8
, pp. 3944-3951
-
-
Mostafazadeh, A.1
-
11
-
-
1142277273
-
Transition elements for a non-Hermitian quadratic Hamiltonian
-
Swanson M S 2004 Transition elements for a non-Hermitian quadratic Hamiltonian J. Math. Phys. 45 585-601
-
(2004)
J. Math. Phys.
, vol.45
, Issue.2
, pp. 585-601
-
-
Swanson, M.S.1
-
12
-
-
5444269301
-
Quasi-hermiticity and the role of a metric in some boson Hamiltonians
-
Geyer H B, Scholtz F G and Snyman I 2004 Quasi-hermiticity and the role of a metric in some boson Hamiltonians Czech. J. Phys. 54 1069-73
-
(2004)
Czech. J. Phys.
, vol.54
, Issue.10
, pp. 1069-1073
-
-
Geyer, H.B.1
Scholtz, F.G.2
Snyman, I.3
-
13
-
-
14644433607
-
On pseudo-Hermitian Hamiltonians and their Hermitian counterparts
-
Jones H F 2005 On pseudo-Hermitian Hamiltonians and their Hermitian counterparts J. Phys. A 38 1741-6
-
(2005)
J. Phys.
, vol.38
, Issue.8
, pp. 1741-1746
-
-
Jones, H.F.1
-
14
-
-
33746758270
-
Metric operator in pseudo-Hermitian quantum mechanics and the imaginary cubic potential
-
Mostafazadeh A 2006 Metric operator in pseudo-Hermitian quantum mechanics and the imaginary cubic potential J. Phys. A 39 10171-88
-
(2006)
J. Phys.
, vol.39
, Issue.32
, pp. 10171-10188
-
-
Mostafazadeh, A.1
-
15
-
-
33947257382
-
Delta-function potential with a complex coupling
-
Mostafazadeh A 2006 Delta-function potential with a complex coupling J. Phys. A 39 13495-506
-
(2006)
J. Phys.
, vol.39
, Issue.43
, pp. 13495-13506
-
-
Mostafazadeh, A.1
-
16
-
-
33746807203
-
Differential realization of pseudo-hermiticity: A quantum mechanical analog of Einstein's field equation
-
Mostafazadeh A 2006 Differential realization of pseudo-hermiticity: a quantum mechanical analog of Einstein's field equation J. Math. Phys. 47 072103
-
(2006)
J. Math. Phys.
, vol.47
, Issue.7
, pp. 072103
-
-
Mostafazadeh, A.1
-
17
-
-
32344449787
-
Operator equations and Moyal products-metrics in quasi-Hermitian quantum mechanics
-
Scholtz F G and Geyer H B 2006 Operator equations and Moyal products-metrics in quasi-Hermitian quantum mechanics Phys. Lett. B 634 84-92
-
(2006)
Phys. Lett.
, vol.634
, Issue.1
, pp. 84-92
-
-
Scholtz, F.G.1
Geyer, H.B.2
-
18
-
-
33746738814
-
Moyal products-a new perspective on quasi-hermitian quantum mechanics
-
Scholtz F G and Geyer H B 2006 Moyal products-a new perspective on quasi-hermitian quantum mechanics J. Phys. A 39 10189-205
-
(2006)
J. Phys.
, vol.39
, Issue.32
, pp. 10189-10205
-
-
Scholtz, F.G.1
Geyer, H.B.2
-
20
-
-
34447504536
-
Choice of a metric for the non-hermitian oscillator
-
Musumbu D P, Scholtz F G and Geyer H B 2007 Choice of a metric for the non-hermitian oscillator J. Phys. A 40 F75-80
-
(2007)
J. Phys.
, vol.40
, Issue.2
-
-
Musumbu, D.P.1
Scholtz, F.G.2
Geyer, H.B.3
-
21
-
-
1942539293
-
Quasi-Hermiticity in infinite-dimensional Hilbert spaces
-
Kretschmer R and Szymanowski L 2004 Quasi-Hermiticity in infinite-dimensional Hilbert spaces Phys. Lett. A 325 112-7
-
(2004)
Phys. Lett.
, vol.325
, Issue.2
, pp. 112-117
-
-
Kretschmer, R.1
Szymanowski, L.2
-
22
-
-
0012878839
-
Point interactions -Hermiticity and reality of the spectrum
-
Albeverio S, Fei S M and Kurasov P 2002 Point interactions -Hermiticity and reality of the spectrum Lett. Math. Phys. 59 227-42
-
(2002)
Lett. Math. Phys.
, vol.59
, Issue.3
, pp. 227-242
-
-
Albeverio, S.1
Fei, S.M.2
Kurasov, P.3
-
25
-
-
0037269797
-
On one dimensional dissipative Schrödinger-type operators their dilations and eigenfunction expansions
-
Kaiser H Ch, Neidhardt H and Rehberg J 2003 On one dimensional dissipative Schrödinger-type operators their dilations and eigenfunction expansions Math. Nachr. 252 51-69
-
(2003)
Math. Nachr.
, vol.252
, Issue.1
, pp. 51-69
-
-
Ch, K.H.1
Neidhardt, H.2
Rehberg, J.3
|