메뉴 건너뛰기




Volumn 17, Issue 2, 2008, Pages 311-331

Bias-reduced estimators of the Weibull tail-coefficient

Author keywords

Asymptotic normality; Bias reduction; Least squares approach; Weibull tail coefficient

Indexed keywords


EID: 48249127254     PISSN: 11330686     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11749-006-0034-6     Document Type: Article
Times cited : (27)

References (21)
  • 2
    • 0005815606 scopus 로고
    • The mean residual life function at great age: Applications to tail estimation
    • 1-2
    • Beirlant J, Broniatowski M, Teugels J, Vynckier P (1995) The mean residual life function at great age: applications to tail estimation. J Stat Plan Inference 45(1-2):21-48
    • (1995) J Stat Plan Inference , vol.45 , pp. 21-48
    • Beirlant, J.1    Broniatowski, M.2    Teugels, J.3    Vynckier, P.4
  • 4
    • 0001074848 scopus 로고    scopus 로고
    • Tail index estimation and an exponential regression model
    • 2
    • Beirlant J, Dierckx G, Goegebeur Y, Matthys G (1999) Tail index estimation and an exponential regression model. Extremes 2(2):177-200
    • (1999) Extremes , vol.2 , pp. 177-200
    • Beirlant, J.1    Dierckx, G.2    Goegebeur, Y.3    Matthys, G.4
  • 5
    • 2642550931 scopus 로고    scopus 로고
    • On exponential representations of log-spacings of extreme order statistics
    • 2
    • Beirlant J, Dierckx G, Guillou A, Starica C (2002) On exponential representations of log-spacings of extreme order statistics. Extremes 5(2):157-180
    • (2002) Extremes , vol.5 , pp. 157-180
    • Beirlant, J.1    Dierckx, G.2    Guillou, A.3    Starica, C.4
  • 6
    • 28044470283 scopus 로고    scopus 로고
    • Semiparametric lower bounds for tail index estimation
    • 3
    • Beirlant J, Bouquiaux C, Werker B (2006) Semiparametric lower bounds for tail index estimation. J Stat Plan Inference 136(3):705-729
    • (2006) J Stat Plan Inference , vol.136 , pp. 705-729
    • Beirlant, J.1    Bouquiaux, C.2    Werker, B.3
  • 7
    • 38249003293 scopus 로고
    • On the estimation of the Weibull tail coefficient
    • 3
    • Broniatowski M (1993) On the estimation of the Weibull tail coefficient. J Stat Plan Inference 35(3):349-365
    • (1993) J Stat Plan Inference , vol.35 , pp. 349-365
    • Broniatowski, M.1
  • 8
    • 0000617024 scopus 로고
    • Models for exceedances over high thresholds
    • 3
    • Davison A, Smith R (1990) Models for exceedances over high thresholds. J Roy Stat Soc Ser B 52(3):393-442
    • (1990) J Roy Stat Soc ser B , vol.52 , pp. 393-442
    • Davison, A.1    Smith, R.2
  • 9
    • 30444434892 scopus 로고    scopus 로고
    • Quasi-conjugate Bayes estimates for GPD parameters and application to heavy tails modelling
    • Diebolt J, El-Aroui M, Garrido M, Girard S (2005a) Quasi-conjugate Bayes estimates for GPD parameters and application to heavy tails modelling. Extremes 8:57-78
    • (2005) Extremes , vol.8 , pp. 57-78
    • Diebolt, J.1    El-Aroui, M.2    Garrido, M.3    Girard, S.4
  • 11
    • 0033424571 scopus 로고    scopus 로고
    • Estimating a tail exponent by modelling departure from a Pareto distribution
    • 2
    • Feuerverger A, Hall P (1999) Estimating a tail exponent by modelling departure from a Pareto distribution. Ann Stat 27(2):760-781
    • (1999) Ann Stat , vol.27 , pp. 760-781
    • Feuerverger, A.1    Hall, P.2
  • 12
    • 20344404197 scopus 로고    scopus 로고
    • Estimating extreme quantiles of Weibull tail distributions
    • 5
    • Gardes L, Girard S (2005) Estimating extreme quantiles of Weibull tail distributions. Commun Stat Theory Methods 34(5):1065-1080
    • (2005) Commun Stat Theory Methods , vol.34 , pp. 1065-1080
    • Gardes, L.1    Girard, S.2
  • 13
    • 38349043271 scopus 로고    scopus 로고
    • Comparison of Weibull tail-coefficient estimators
    • 2
    • Gardes L, Girard S (2006) Comparison of Weibull tail-coefficient estimators. REVSTAT Stat J 4(2):163-188
    • (2006) REVSTAT Stat J , vol.4 , pp. 163-188
    • Gardes, L.1    Girard, S.2
  • 15
    • 1542345529 scopus 로고    scopus 로고
    • A Hill type estimate of the Weibull tail-coefficient
    • 2
    • Girard S (2004) A Hill type estimate of the Weibull tail-coefficient. Commun Stat Theory Methods 33(2):205-234
    • (2004) Commun Stat Theory Methods , vol.33 , pp. 205-234
    • Girard, S.1
  • 16
    • 0000817285 scopus 로고
    • Adaptive estimates of parameters of regular variation
    • Hall P, Welsh A (1985) Adaptive estimates of parameters of regular variation. Ann Stat 13:331-341
    • (1985) Ann Stat , vol.13 , pp. 331-341
    • Hall, P.1    Welsh, A.2
  • 17
    • 0001263124 scopus 로고
    • A simple general approach to inference about the tail of a distribution
    • Hill BM (1975) A simple general approach to inference about the tail of a distribution. Ann Stat 3:1163-1174
    • (1975) Ann Stat , vol.3 , pp. 1163-1174
    • Hill, B.M.1
  • 18
    • 0022113451 scopus 로고
    • Estimation of the generalized extreme-value distribution by the method of probability-weighted moments
    • Hosking J, Wallis J, Wood E (1985) Estimation of the generalized extreme-value distribution by the method of probability-weighted moments. Technometrics 27:251-257
    • (1985) Technometrics , vol.27 , pp. 251-257
    • Hosking, J.1    Wallis, J.2    Wood, E.3
  • 19
    • 0141573196 scopus 로고    scopus 로고
    • Estimating the extreme value index and high quantiles with exponential regression models
    • 3
    • Matthys G, Beirlant J (2003) Estimating the extreme value index and high quantiles with exponential regression models. Stat Sin 13(3):853-880
    • (2003) Stat Sin , vol.13 , pp. 853-880
    • Matthys, G.1    Beirlant, J.2
  • 20
    • 2642586330 scopus 로고    scopus 로고
    • Estimating catastrophic quantile levels for heavy-tailed distributions
    • 3
    • Matthys G, Delafosse E, Guillou A, Beirlant J (2004) Estimating catastrophic quantile levels for heavy-tailed distributions. Insur Math Econ 34(3):517-537
    • (2004) Insur Math Econ , vol.34 , pp. 517-537
    • Matthys, G.1    Delafosse, E.2    Guillou, A.3    Beirlant, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.