메뉴 건너뛰기




Volumn 27, Issue 3, 2008, Pages 157-179

Computational biology of genome expression and regulation - A review of microarray bioinformatics

Author keywords

Bioinformatics; Computational biology; Data mining; Genome regulation; Microarray analysis

Indexed keywords

BIOINFORMATICS; BIOLOGY; COMPUTER PROGRAM; DATA ANALYSIS; DNA MICROARRAY; DNA SEQUENCE; DROSOPHILA MELANOGASTER; ENZYME ACTIVITY; GENE CONTROL; GENE EXPRESSION; GENE STRUCTURE; HUMAN; IMAGE ANALYSIS; MICROARRAY ANALYSIS; MODEL; NONHUMAN; PRIORITY JOURNAL; PROTEIN BINDING; REVIEW; SURVIVAL; TUMOR CLASSIFICATION;

EID: 48249114838     PISSN: 07318898     EISSN: None     Source Type: Journal    
DOI: 10.1615/JEnvironPatholToxicolOncol.v27.i3.10     Document Type: Review
Times cited : (16)

References (137)
  • 1
    • 0028806048 scopus 로고
    • Quantitative monitoring of gene expression patterns with a complementary DNA microarray
    • Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995;270:467-70.
    • (1995) Science , vol.270 , pp. 467-470
    • Schena, M.1    Shalon, D.2    Davis, R.W.3    Brown, P.O.4
  • 3
    • 0033031437 scopus 로고    scopus 로고
    • DNA arrays for analysis of gene expression
    • Eisen MB, Brown PO. DNA arrays for analysis of gene expression. Methods Enzymol. 1999;303:179-205.
    • (1999) Methods Enzymol , vol.303 , pp. 179-205
    • Eisen, M.B.1    Brown, P.O.2
  • 6
    • 35748982895 scopus 로고    scopus 로고
    • Getting started in tiling microarray analysis
    • Liu XS. Getting started in tiling microarray analysis. PLoS Comput Biol. 2007;3:1842-4.
    • (2007) PLoS Comput Biol , vol.3 , pp. 1842-1844
    • Liu, X.S.1
  • 10
    • 28644440465 scopus 로고    scopus 로고
    • Combined static and dynamic analysis for determining the quality of time-series expression profiles
    • Simon I, Siegfried Z, Ernst J, Bar-Joseph Z. Combined static and dynamic analysis for determining the quality of time-series expression profiles. Nat Biotechnol. 2005;23:1503-8.
    • (2005) Nat Biotechnol , vol.23 , pp. 1503-1508
    • Simon, I.1    Siegfried, Z.2    Ernst, J.3    Bar-Joseph, Z.4
  • 13
    • 1342294092 scopus 로고    scopus 로고
    • Normalization for cDNA microarray data: A robust composite method addressing single and multiple slide systematic variation
    • Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP. Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res. 2002;30:e15.
    • (2002) Nucleic Acids Res , vol.30
    • Yang, Y.H.1    Dudoit, S.2    Luu, P.3    Lin, D.M.4    Peng, V.5    Ngai, J.6    Speed, T.P.7
  • 14
    • 0037316303 scopus 로고    scopus 로고
    • A comparison of normalization methods for high density oligonucleotide array data based on variance and bias
    • Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003;19:185-93.
    • (2003) Bioinformatics , vol.19 , pp. 185-193
    • Bolstad, B.M.1    Irizarry, R.A.2    Astrand, M.3    Speed, T.P.4
  • 15
    • 2942601439 scopus 로고    scopus 로고
    • Tumor classification and marker gene prediction by feature selection and fuzzy c-means clustering using microarray data
    • Wang J, Bo TH, Jonassen I, Myklebost O, Hovig E. Tumor classification and marker gene prediction by feature selection and fuzzy c-means clustering using microarray data. BMC Bioinformatics. 2003;4:60.
    • (2003) BMC Bioinformatics , vol.4 , pp. 60
    • Wang, J.1    Bo, T.H.2    Jonassen, I.3    Myklebost, O.4    Hovig, E.5
  • 16
    • 2942511784 scopus 로고    scopus 로고
    • Clustering of the SOM easily reveals distinct gene expression patterns: Results of a reanalysis of lymphoma study
    • Wang J, Delabie J, Aasheim H, Smeland E, Myklebost O. Clustering of the SOM easily reveals distinct gene expression patterns: results of a reanalysis of lymphoma study. BMC Bioinformatics. 2002;3:36.
    • (2002) BMC Bioinformatics , vol.3 , pp. 36
    • Wang, J.1    Delabie, J.2    Aasheim, H.3    Smeland, E.4    Myklebost, O.5
  • 19
    • 34147104969 scopus 로고    scopus 로고
    • A faster circular binary segmentation algorithm for the analysis of array CGH data
    • Venkatraman ES, Olshen AB. A faster circular binary segmentation algorithm for the analysis of array CGH data. Bioinformatics. 2007;23:657-63.
    • (2007) Bioinformatics , vol.23 , pp. 657-663
    • Venkatraman, E.S.1    Olshen, A.B.2
  • 20
    • 0345327603 scopus 로고    scopus 로고
    • MGraph: Graphical models for microarray data analysis
    • Wang J, Myklebost O, Hovig E. MGraph: graphical models for microarray data analysis. Bioinformatics. 2003;19:2210-1.
    • (2003) Bioinformatics , vol.19 , pp. 2210-2211
    • Wang, J.1    Myklebost, O.2    Hovig, E.3
  • 21
    • 0345928693 scopus 로고    scopus 로고
    • Building and analysing genome-wide gene disruption networks
    • Rung J, Schlitt T, Brazma A, Freivalds K, Vilo J. Building and analysing genome-wide gene disruption networks. Bioinformatics. 2002;18 Suppl 2:S202-10.
    • (2002) Bioinformatics , vol.18 , Issue.SUPPL. 2
    • Rung, J.1    Schlitt, T.2    Brazma, A.3    Freivalds, K.4    Vilo, J.5
  • 23
    • 0000884487 scopus 로고    scopus 로고
    • Experimental design for gene expression microarrays
    • Kerr MK, Churchill GA. Experimental design for gene expression microarrays. Biostatistics. 2001;2:183-201.
    • (2001) Biostatistics , vol.2 , pp. 183-201
    • Kerr, M.K.1    Churchill, G.A.2
  • 24
    • 0035032570 scopus 로고    scopus 로고
    • Statistical design and the analysis of gene expression microarray data
    • Kerr MK, Churchill GA. Statistical design and the analysis of gene expression microarray data. Genet Res. 2001;77:123-8.
    • (2001) Genet Res , vol.77 , pp. 123-128
    • Kerr, M.K.1    Churchill, G.A.2
  • 25
    • 0037114470 scopus 로고    scopus 로고
    • Power and sample size for DNA microarray studies
    • Lee ML, Whitmore, G.A. Power and sample size for DNA microarray studies. Stat Med. 2002;21:3543-70.
    • (2002) Stat Med , vol.21 , pp. 3543-3570
    • Lee, M.L.1    Whitmore, G.A.2
  • 26
    • 0036319960 scopus 로고    scopus 로고
    • Design issues for cDNA microarray experiments
    • Yang YH, Speed T. Design issues for cDNA microarray experiments. Nat Rev Genet. 2002;3:579-88.
    • (2002) Nat Rev Genet , vol.3 , pp. 579-588
    • Yang, Y.H.1    Speed, T.2
  • 27
    • 34547665470 scopus 로고    scopus 로고
    • Microarray data analysis: An overview of design, methodology, and analysis
    • Weeraratna AT, Taub DD. Microarray data analysis: an overview of design, methodology, and analysis. Methods Mol Biol. 2007;377:1-16.
    • (2007) Methods Mol Biol , vol.377 , pp. 1-16
    • Weeraratna, A.T.1    Taub, D.D.2
  • 29
    • 85036949117 scopus 로고    scopus 로고
    • The R Project for Statistical Computing. http://www.r-project.org/
  • 33
    • 34547840228 scopus 로고    scopus 로고
    • Continuous hidden process model for time series expression experiments
    • Shi Y, Klustein M, Simon I, Mitchell T, Bar-Joseph Z. Continuous hidden process model for time series expression experiments. Bioinformatics. 2007;23:i459-67.
    • (2007) Bioinformatics , vol.23 , Issue.I459-67
    • Shi, Y.1    Klustein, M.2    Simon, I.3    Mitchell, T.4    Bar-Joseph, Z.5
  • 37
    • 35448950862 scopus 로고    scopus 로고
    • Dual-specificity splice sites function alternatively as 5′ and 3′ splice sites
    • Zhang C, Hastings ML, Krainer AR, Zhang MQ. Dual-specificity splice sites function alternatively as 5′ and 3′ splice sites. Proc Natl Acad Sci USA. 2007;104:15028-33.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 15028-15033
    • Zhang, C.1    Hastings, M.L.2    Krainer, A.R.3    Zhang, M.Q.4
  • 38
    • 84860506529 scopus 로고    scopus 로고
    • Mining ChIP-chip data for transcription factor and cofactor binding sites
    • Smith AD, Sumazin P, Das D, Zhang MQ. Mining ChIP-chip data for transcription factor and cofactor binding sites. Bioinformatics. 2005;21 Suppl 1:i403-12.
    • (2005) Bioinformatics , Issue.SUPPL. 1 i403-12 , pp. 21
    • Smith, A.D.1    Sumazin, P.2    Das, D.3    Zhang, M.Q.4
  • 39
    • 33845290262 scopus 로고    scopus 로고
    • A computational genomics approach to identify cis-regulatory modules from chromatin immunoprecipitation microarray data - a case study using E2F1
    • Jin VX, Rabinovich A, Squazzo SL, Green R, Farnham PJ. A computational genomics approach to identify cis-regulatory modules from chromatin immunoprecipitation microarray data - a case study using E2F1. Genome Res. 2006;16:1585-95.
    • (2006) Genome Res , vol.16 , pp. 1585-1595
    • Jin, V.X.1    Rabinovich, A.2    Squazzo, S.L.3    Green, R.4    Farnham, P.J.5
  • 40
    • 36949023082 scopus 로고    scopus 로고
    • A nucleosome-guided map of transcription factor binding sites in yeast
    • Narlikar L, Gordan R, Hartemink AJ. A nucleosome-guided map of transcription factor binding sites in yeast. PLoS Comput Biol. 2007;3:e215.
    • (2007) PLoS Comput Biol , vol.3
    • Narlikar, L.1    Gordan, R.2    Hartemink, A.J.3
  • 42
    • 27544451127 scopus 로고    scopus 로고
    • Simple decision rules for classifying human cancers from gene expression profiles
    • Tan AC, Naiman DQ, Xu L, Winslow RL, Geman D. Simple decision rules for classifying human cancers from gene expression profiles. Bioinformatics. 2005;21:3896-904.
    • (2005) Bioinformatics , vol.21 , pp. 3896-3904
    • Tan, A.C.1    Naiman, D.Q.2    Xu, L.3    Winslow, R.L.4    Geman, D.5
  • 44
    • 15844413351 scopus 로고    scopus 로고
    • A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis
    • Statnikov A, Aliferis CF, Tsamardinos I, Hardin D, Levy S. A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics. 2005;21:631-43.
    • (2005) Bioinformatics , vol.21 , pp. 631-643
    • Statnikov, A.1    Aliferis, C.F.2    Tsamardinos, I.3    Hardin, D.4    Levy, S.5
  • 51
    • 35948984173 scopus 로고    scopus 로고
    • PennCNV: An integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data
    • Wang K, Li M, Hadley D, Liu R, Glessner J, Grant SF, Hakonarson H, Bucan M. PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res. 2007;17:1665-74.
    • (2007) Genome Res , vol.17 , pp. 1665-1674
    • Wang, K.1    Li, M.2    Hadley, D.3    Liu, R.4    Glessner, J.5    Grant, S.F.6    Hakonarson, H.7    Bucan, M.8
  • 52
    • 0033707946 scopus 로고    scopus 로고
    • Friedman N, Linial M, Nachman I, Pe'er D. Using Bayesian networks to analyze expression data. J Comput Biol. 2000;7:601-20.
    • Friedman N, Linial M, Nachman I, Pe'er D. Using Bayesian networks to analyze expression data. J Comput Biol. 2000;7:601-20.
  • 53
    • 0036207347 scopus 로고    scopus 로고
    • Modeling and simulation of genetic regulatory systems: A literature review
    • de Jong H. Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol. 2002;9:67-103.
    • (2002) J Comput Biol , vol.9 , pp. 67-103
    • de Jong, H.1
  • 54
    • 0037461033 scopus 로고    scopus 로고
    • Dynamic modeling of genetic networks using genetic algorithm and S-system
    • Kikuchi S, Tominaga D, Arita M, Takahashi K, Tomita M. Dynamic modeling of genetic networks using genetic algorithm and S-system. Bioinformatics. 2003;19:643-50.
    • (2003) Bioinformatics , vol.19 , pp. 643-650
    • Kikuchi, S.1    Tominaga, D.2    Arita, M.3    Takahashi, K.4    Tomita, M.5
  • 55
    • 28744449703 scopus 로고    scopus 로고
    • New probabilistic graphical models for genetic regulatory networks studies
    • Wang J, Cheung LW, Delabie J. New probabilistic graphical models for genetic regulatory networks studies. J Biomed Inform. 2005;38:443-55.
    • (2005) J Biomed Inform , vol.38 , pp. 443-455
    • Wang, J.1    Cheung, L.W.2    Delabie, J.3
  • 56
    • 0142179209 scopus 로고    scopus 로고
    • Prediction of regulatory networks: Genome-wide identification of transcription factor targets from gene expression data
    • Qian J, Lin J, Luscombe NM, Yu H, Gerstein M. Prediction of regulatory networks: genome-wide identification of transcription factor targets from gene expression data. Bioinformatics. 2003;19:1917-26.
    • (2003) Bioinformatics , vol.19 , pp. 1917-1926
    • Qian, J.1    Lin, J.2    Luscombe, N.M.3    Yu, H.4    Gerstein, M.5
  • 57
    • 36049002205 scopus 로고    scopus 로고
    • A new framework for identifying combinatorial regulation of transcription factors: A case study of the yeast cell cycle
    • Wang J. A new framework for identifying combinatorial regulation of transcription factors: a case study of the yeast cell cycle. J Biomed Inform. 2007;40:707-25.
    • (2007) J Biomed Inform , vol.40 , pp. 707-725
    • Wang, J.1
  • 58
    • 0035733752 scopus 로고    scopus 로고
    • The contributions of sex, genotype and age to transcriptional variance in Drosophila melanogaster
    • Jin W, Riley RM, Wolfinger RD, White KP, Passador-Gurgel G, Gibson G. The contributions of sex, genotype and age to transcriptional variance in Drosophila melanogaster. Nat Genet. 2001;29:389-95.
    • (2001) Nat Genet , vol.29 , pp. 389-395
    • Jin, W.1    Riley, R.M.2    Wolfinger, R.D.3    White, K.P.4    Passador-Gurgel, G.5    Gibson, G.6
  • 60
    • 13844253637 scopus 로고    scopus 로고
    • A Bayesian approach to reconstructing genetic regulatory networks with hidden factors
    • Beal MJ, Falciani F, Ghahramani Z, Rangel C, Wild DL. A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics. 2005;21:349-56.
    • (2005) Bioinformatics , vol.21 , pp. 349-356
    • Beal, M.J.1    Falciani, F.2    Ghahramani, Z.3    Rangel, C.4    Wild, D.L.5
  • 61
    • 33749825955 scopus 로고    scopus 로고
    • Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and bayesian networks
    • Werhli AV, Grzegorczyk M, Husmeier D. Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and bayesian networks. Bioinformatics. 2006;22:2523-31.
    • (2006) Bioinformatics , vol.22 , pp. 2523-2531
    • Werhli, A.V.1    Grzegorczyk, M.2    Husmeier, D.3
  • 62
    • 29244456166 scopus 로고    scopus 로고
    • A microarray data-based semi-kinetic method for predicting quantitative dynamics of genetic networks
    • Yugi K, Nakayama Y, Kojima S, Kitayama T, Tomita M. A microarray data-based semi-kinetic method for predicting quantitative dynamics of genetic networks. BMC Bioinformatics. 2005;6:299.
    • (2005) BMC Bioinformatics , vol.6 , pp. 299
    • Yugi, K.1    Nakayama, Y.2    Kojima, S.3    Kitayama, T.4    Tomita, M.5
  • 63
    • 33745440791 scopus 로고    scopus 로고
    • Das D, Nahle Z, Zhang MQ. Adaptively inferring human transcriptional subnetworks. Mol Syst Biol. 2006;2:2006.0029.
    • Das D, Nahle Z, Zhang MQ. Adaptively inferring human transcriptional subnetworks. Mol Syst Biol. 2006;2:2006.0029.
  • 64
    • 38849171836 scopus 로고    scopus 로고
    • Reliable prediction of regulator targets using 12 Drosophila genomes
    • Kheradpour P, Stark A, Roy S, Kellis M. Reliable prediction of regulator targets using 12 Drosophila genomes. Genome Res. 2007;17:1919-31.
    • (2007) Genome Res , vol.17 , pp. 1919-1931
    • Kheradpour, P.1    Stark, A.2    Roy, S.3    Kellis, M.4
  • 65
    • 1942452749 scopus 로고    scopus 로고
    • Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae
    • Kellis M, Birren BW, Lander ES. Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature. 2004;428:617-24.
    • (2004) Nature , vol.428 , pp. 617-624
    • Kellis, M.1    Birren, B.W.2    Lander, E.S.3
  • 67
    • 1242316281 scopus 로고    scopus 로고
    • ChIP-chip: Considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments
    • Buck MJ, Lieb JD. ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics. 2004;83:349-60.
    • (2004) Genomics , vol.83 , pp. 349-360
    • Buck, M.J.1    Lieb, J.D.2
  • 68
    • 0035135420 scopus 로고    scopus 로고
    • Regulatory element detection using correlation with expression
    • Bussemaker HJ, Li H, Siggia ED. Regulatory element detection using correlation with expression. Nat Genet. 2001;27:167-71.
    • (2001) Nat Genet , vol.27 , pp. 167-171
    • Bussemaker, H.J.1    Li, H.2    Siggia, E.D.3
  • 69
    • 0034785443 scopus 로고    scopus 로고
    • Identifying regulatory networks by combinatorial analysis of promoter elements
    • Pilpel Y, Sudarsanam P, Church, GM. Identifying regulatory networks by combinatorial analysis of promoter elements. Nat Genet. 2001;29:153-9.
    • (2001) Nat Genet , vol.29 , pp. 153-159
    • Pilpel, Y.1    Sudarsanam, P.2    Church, G.M.3
  • 70
    • 33748191291 scopus 로고    scopus 로고
    • Statistical mechanical modeling of genome-wide transcription factor occupancy data by MatrixREDUCE
    • Foat BC, Morozov AV, Bussemaker HJ. Statistical mechanical modeling of genome-wide transcription factor occupancy data by MatrixREDUCE. Bioinformatics. 2006;22:e141-9.
    • (2006) Bioinformatics , vol.22
    • Foat, B.C.1    Morozov, A.V.2    Bussemaker, H.J.3
  • 72
    • 33746691336 scopus 로고    scopus 로고
    • Extensive low-affinity transcriptional interactions in the yeast genome
    • Tanay A. Extensive low-affinity transcriptional interactions in the yeast genome. Genome Res. 2006;16:962-72.
    • (2006) Genome Res , vol.16 , pp. 962-972
    • Tanay, A.1
  • 73
    • 34547653033 scopus 로고    scopus 로고
    • Predictive models of gene regulation: Application of regression methods to microarray data
    • Das D, Zhang MQ. Predictive models of gene regulation: application of regression methods to microarray data. Methods Mol Biol. 2007;377:95-110.
    • (2007) Methods Mol Biol , vol.377 , pp. 95-110
    • Das, D.1    Zhang, M.Q.2
  • 74
    • 9244257298 scopus 로고    scopus 로고
    • Interacting models of cooperative gene regulation
    • Das D, Banerjee N, Zhang MQ. Interacting models of cooperative gene regulation. Proc Natl Acad Sci USA. 2004;101:16234-9.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 16234-16239
    • Das, D.1    Banerjee, N.2    Zhang, M.Q.3
  • 75
    • 34347237542 scopus 로고    scopus 로고
    • Predictive modeling of genome-wide mRNA expression: From modules to molecules
    • Bussemaker HJ, Foat BC, Ward LD. Predictive modeling of genome-wide mRNA expression: from modules to molecules. Annu Rev Biophys Biomol Struct. 2007;36:329-47.
    • (2007) Annu Rev Biophys Biomol Struct , vol.36 , pp. 329-347
    • Bussemaker, H.J.1    Foat, B.C.2    Ward, L.D.3
  • 76
    • 0345743695 scopus 로고    scopus 로고
    • Transcriptome-based determination of multiple transcription regulator activities in Escherichia coli by using network component analysis
    • Kao KC, Yang YL, Boscolo R, Sabatti C, Roychowdhury V, Liao JC. Transcriptome-based determination of multiple transcription regulator activities in Escherichia coli by using network component analysis. Proc Natl Acad Sci USA. 2004;101:641-6.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 641-646
    • Kao, K.C.1    Yang, Y.L.2    Boscolo, R.3    Sabatti, C.4    Roychowdhury, V.5    Liao, J.C.6
  • 77
    • 27744485351 scopus 로고    scopus 로고
    • Dynamic modeling of cis-regulatory circuits and gene expression prediction via cross-gene identification
    • Lin LH, Lee HC, Li WH, Chen BS. Dynamic modeling of cis-regulatory circuits and gene expression prediction via cross-gene identification. BMC Bioinformatics. 2005;6:258.
    • (2005) BMC Bioinformatics , vol.6 , pp. 258
    • Lin, L.H.1    Lee, H.C.2    Li, W.H.3    Chen, B.S.4
  • 78
    • 23744491001 scopus 로고    scopus 로고
    • Predicting transcription factor activities from combined analysis of microarray and ChIP data: A partial least squares approach
    • Boulesteix AL, Strimmer K. Predicting transcription factor activities from combined analysis of microarray and ChIP data: a partial least squares approach. Theor Biol Med Model. 2005;2:23.
    • (2005) Theor Biol Med Model , vol.2 , pp. 23
    • Boulesteix, A.L.1    Strimmer, K.2
  • 79
    • 33645108505 scopus 로고    scopus 로고
    • Using a state-space model with hidden variables to infer transcription factor activities
    • Li Z, Shaw SM, Yedwabnick MJ, Chan C. Using a state-space model with hidden variables to infer transcription factor activities. Bioinformatics. 2006;22:747-54.
    • (2006) Bioinformatics , vol.22 , pp. 747-754
    • Li, Z.1    Shaw, S.M.2    Yedwabnick, M.J.3    Chan, C.4
  • 81
    • 85036935302 scopus 로고    scopus 로고
    • Quantitative Model for inferring dynamic regulation of the tumor suppressor gene p53
    • In preparation
    • Wang JT, Tian TH. Quantitative Model for inferring dynamic regulation of the tumor suppressor gene p53. In preparation.
    • Wang, J.T.1    Tian, T.H.2
  • 82
    • 33745605801 scopus 로고    scopus 로고
    • Stochastic transcriptional regulatory systems with time delays: A mean-field approximation
    • Goutsias J, Kim S. Stochastic transcriptional regulatory systems with time delays: a mean-field approximation. J Comput Biol. 2006;13:1049-76.
    • (2006) J Comput Biol , vol.13 , pp. 1049-1076
    • Goutsias, J.1    Kim, S.2
  • 83
    • 34249856850 scopus 로고    scopus 로고
    • Bayesian model-based inference of transcription factor activity
    • Rogers S, Khanin R, Girolami M. Bayesian model-based inference of transcription factor activity. BMC Bioinformatics. 2007;8 Suppl 2:S2.
    • (2007) BMC Bioinformatics , vol.8 , Issue.SUPPL. 2
    • Rogers, S.1    Khanin, R.2    Girolami, M.3
  • 84
    • 0035236830 scopus 로고    scopus 로고
    • Visualizing associations between genome sequences and gene expression data using genome-mean expression profiles
    • Chiang DY, Brown PO, Eisen MB. Visualizing associations between genome sequences and gene expression data using genome-mean expression profiles. Bioinformatics. 2001;17 Suppl 1:S49-55.
    • (2001) Bioinformatics , vol.17 , Issue.SUPPL. 1
    • Chiang, D.Y.1    Brown, P.O.2    Eisen, M.B.3
  • 85
    • 33745434510 scopus 로고    scopus 로고
    • Bussemaker HJ. Modeling gene expression control using Omes Law. Mol Syst Biol. 2006;2:2006.0013.
    • Bussemaker HJ. Modeling gene expression control using Omes Law. Mol Syst Biol. 2006;2:2006.0013.
  • 86
    • 33845365903 scopus 로고    scopus 로고
    • A Gibbs sampler for the identification of gene expression and network connectivity consistency
    • Brynildsen MP, Tran LM, Liao JC. A Gibbs sampler for the identification of gene expression and network connectivity consistency. Bioinformatics. 2006;22:3040-6.
    • (2006) Bioinformatics , vol.22 , pp. 3040-3046
    • Brynildsen, M.P.1    Tran, L.M.2    Liao, J.C.3
  • 89
    • 36949030484 scopus 로고    scopus 로고
    • Predicting gene expression from sequence: A reexamination
    • Yuan Y, Guo L, Shen L, Liu JS. Predicting gene expression from sequence: a reexamination. PLoS Comput Biol. 2007;3:e243.
    • (2007) PLoS Comput Biol , vol.3
    • Yuan, Y.1    Guo, L.2    Shen, L.3    Liu, J.S.4
  • 90
    • 2442446708 scopus 로고    scopus 로고
    • Genome-wide discovery of transcriptional modules from DNA sequence and gene expression
    • Segal E, Yelensky R, Koller D. Genome-wide discovery of transcriptional modules from DNA sequence and gene expression. Bioinformatics. 2003;19 Suppl 1:i273-82.
    • (2003) Bioinformatics , Issue.SUPPL. 1 i273-82 , pp. 19
    • Segal, E.1    Yelensky, R.2    Koller, D.3
  • 91
    • 1942453302 scopus 로고    scopus 로고
    • Predicting gene expression from sequence
    • Beer MA, Tavazoie S. Predicting gene expression from sequence. Cell. 2004;117:185-98.
    • (2004) Cell , vol.117 , pp. 185-198
    • Beer, M.A.1    Tavazoie, S.2
  • 92
    • 38749127589 scopus 로고    scopus 로고
    • Segal E, Raveh-Sadka T, Schroeder M, Unnerstall U, Gaul U. Predicting expression patterns from regulatory sequence in Drosophila segmentation. Nature. 2008.
    • Segal E, Raveh-Sadka T, Schroeder M, Unnerstall U, Gaul U. Predicting expression patterns from regulatory sequence in Drosophila segmentation. Nature. 2008.
  • 93
    • 13544254744 scopus 로고    scopus 로고
    • Identifying combinatorial regulation of transcription factors and binding motifs
    • Kato M, Hata N, Banerjee N, Futcher B, Zhang MQ. Identifying combinatorial regulation of transcription factors and binding motifs. Genome Biol. 2004;5:R56.
    • (2004) Genome Biol , vol.5
    • Kato, M.1    Hata, N.2    Banerjee, N.3    Futcher, B.4    Zhang, M.Q.5
  • 94
    • 33748694308 scopus 로고    scopus 로고
    • Identification of transcription factor cooperativity via stochastic system model
    • Chang YH, Wang YC, Chen BS. Identification of transcription factor cooperativity via stochastic system model. Bioinformatics. 2006;22:2276-82.
    • (2006) Bioinformatics , vol.22 , pp. 2276-2282
    • Chang, Y.H.1    Wang, Y.C.2    Chen, B.S.3
  • 95
    • 33745449162 scopus 로고    scopus 로고
    • Comprehensive analysis of combinatorial regulation using the transcriptional regulatory network of yeast
    • Balaji S, Babu MM, Iyer LM, Luscombe NM, Aravind L. Comprehensive analysis of combinatorial regulation using the transcriptional regulatory network of yeast. J Mol Biol. 2006;360:213-27.
    • (2006) J Mol Biol , vol.360 , pp. 213-227
    • Balaji, S.1    Babu, M.M.2    Iyer, L.M.3    Luscombe, N.M.4    Aravind, L.5
  • 96
    • 22344434546 scopus 로고    scopus 로고
    • Discovering functional transcription-factor combinations in the human cell cycle
    • Zhu Z, Shendure J, Church, G.M. Discovering functional transcription-factor combinations in the human cell cycle. Genome Res 2005;15:848-55.
    • (2005) Genome Res , vol.15 , pp. 848-855
    • Zhu, Z.1    Shendure, J.2    Church, G.M.3
  • 97
    • 33750217984 scopus 로고    scopus 로고
    • Computational analysis of tissue-specific combinatorial gene regulation: Predicting interaction between transcription factors in human tissues
    • Yu X, Lin J, Zack DJ, Qian J. Computational analysis of tissue-specific combinatorial gene regulation: predicting interaction between transcription factors in human tissues. Nucleic Acids Res. 2006;34:4925-36.
    • (2006) Nucleic Acids Res , vol.34 , pp. 4925-4936
    • Yu, X.1    Lin, J.2    Zack, D.J.3    Qian, J.4
  • 99
    • 85036943272 scopus 로고    scopus 로고
    • Microarray Software Suite
    • Microarray Software Suite: http://www.tm4.org/index.html.
  • 100
    • 0037099005 scopus 로고    scopus 로고
    • Saal LH, Troein C, Vallon-Christersson J, Gruvberger S, Borg A, Peterson C. BioArray Software Environment (BASE): a platform for comprehensive management and analysis of microarray data. Genome Biol. 2002;3:SOFTWARE0003.
    • Saal LH, Troein C, Vallon-Christersson J, Gruvberger S, Borg A, Peterson C. BioArray Software Environment (BASE): a platform for comprehensive management and analysis of microarray data. Genome Biol. 2002;3:SOFTWARE0003.
  • 103
    • 36549052737 scopus 로고    scopus 로고
    • A microarray analysis for differential gene expression in the soybean genome using Bioconductor and R
    • Alvord, WG, Roayaei JA, Quinones OA, Schneider KT. A microarray analysis for differential gene expression in the soybean genome using Bioconductor and R. Brief Bioinform. 2007;8:415-31.
    • (2007) Brief Bioinform , vol.8 , pp. 415-431
    • Alvord, W.G.1    Roayaei, J.A.2    Quinones, O.A.3    Schneider, K.T.4
  • 104
    • 33750354315 scopus 로고    scopus 로고
    • Back to the future: Education for systems-level biologists
    • Wingreen N, Botstein D. Back to the future: education for systems-level biologists. Nat Rev Mol Cell Biol. 2006;7:829-32.
    • (2006) Nat Rev Mol Cell Biol , vol.7 , pp. 829-832
    • Wingreen, N.1    Botstein, D.2
  • 107
    • 36049018312 scopus 로고    scopus 로고
    • Stark A, Lin MF, Kheradpour P, Pedersen JS, Parts L, Carlson JW, Crosby MA, Rasmussen MD, Roy S, Deoras AN, Ruby JG, Brennecke J, Hodges E, Hinrichs AS, Caspi A, Paten B, Park SW, Han MV, Maeder ML, Polansky BJ, Robson BE, Aerts S, van Helden J, Hassan B, Gilbert DG, Eastman DA, Rice M, Weir M, Hahn MW, Park Y, Dewey CN, Pachter L, Kent WJ, Haussler D, Lai EC, Bartel DP, Hannon GJ, Kaufman TC, Eisen MB, Clark AG, Smith D, Celniker SE, Gelbart WM, Kellis M. Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures. Nature. 2007;450:219-32.
    • Stark A, Lin MF, Kheradpour P, Pedersen JS, Parts L, Carlson JW, Crosby MA, Rasmussen MD, Roy S, Deoras AN, Ruby JG, Brennecke J, Hodges E, Hinrichs AS, Caspi A, Paten B, Park SW, Han MV, Maeder ML, Polansky BJ, Robson BE, Aerts S, van Helden J, Hassan B, Gilbert DG, Eastman DA, Rice M, Weir M, Hahn MW, Park Y, Dewey CN, Pachter L, Kent WJ, Haussler D, Lai EC, Bartel DP, Hannon GJ, Kaufman TC, Eisen MB, Clark AG, Smith D, Celniker SE, Gelbart WM, Kellis M. Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures. Nature. 2007;450:219-32.
  • 108
    • 0038349948 scopus 로고    scopus 로고
    • Sequencing and comparison of yeast species to identify genes and regulatory elements
    • Kellis M, Patterson N, Endrizzi, M, Birren, B, Lander ES. Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature. 2003;423:241-54.
    • (2003) Nature , vol.423 , pp. 241-254
    • Kellis, M.1    Patterson, N.2    Endrizzi, M.3    Birren, B.4    Lander, E.S.5
  • 113
    • 34250359062 scopus 로고    scopus 로고
    • ENCODE: More genomic empowerment
    • Weinstock GM. ENCODE: more genomic empowerment. Genome Res. 2007;17:667-8.
    • (2007) Genome Res , vol.17 , pp. 667-668
    • Weinstock, G.M.1
  • 114
    • 38349118310 scopus 로고    scopus 로고
    • Identification of phylogenetically conserved microRNA cis-regulatory elements across 12 Drosophila species
    • Wang X, Gu J, Zhang MQ, Li Y. Identification of phylogenetically conserved microRNA cis-regulatory elements across 12 Drosophila species. Bioinformatics. 2008;24:165-71.
    • (2008) Bioinformatics , vol.24 , pp. 165-171
    • Wang, X.1    Gu, J.2    Zhang, M.Q.3    Li, Y.4
  • 115
    • 37548999369 scopus 로고    scopus 로고
    • Computational epigenetics
    • Bock C, Lengauer, T Computational epigenetics. Bioinformatics. 2008;24:1-10.
    • (2008) Bioinformatics , vol.24 , pp. 1-10
    • Bock, C.1    Lengauer, T.2
  • 117
    • 34548359013 scopus 로고    scopus 로고
    • Transcription factor binding site identification in yeast: A comparison of high-density oligonucleotide and PCR-based microarray platforms
    • Borneman AR, Zhang ZD, Rozowsky J, Seringhaus MR, Gerstein M, Snyder M. Transcription factor binding site identification in yeast: a comparison of high-density oligonucleotide and PCR-based microarray platforms. Funct Integr Genomics. 2007;7:7335-45.
    • (2007) Funct Integr Genomics , vol.7 , pp. 7335-7345
    • Borneman, A.R.1    Zhang, Z.D.2    Rozowsky, J.3    Seringhaus, M.R.4    Gerstein, M.5    Snyder, M.6
  • 118
    • 15244358503 scopus 로고    scopus 로고
    • Systematic discovery of regulatory motifs in human promoters and 3' UTRs by comparison of several mammals
    • Xie X, Lu J, Kulbokas EJ, Golub TR, Mootha V, Lindblad-Toh K, Lander ES, Kellis M. Systematic discovery of regulatory motifs in human promoters and 3' UTRs by comparison of several mammals. Nature. 2005;434:338-45.
    • (2005) Nature , vol.434 , pp. 338-345
    • Xie, X.1    Lu, J.2    Kulbokas, E.J.3    Golub, T.R.4    Mootha, V.5    Lindblad-Toh, K.6    Lander, E.S.7    Kellis, M.8
  • 119
    • 40549121344 scopus 로고    scopus 로고
    • Use of an evolutionary model to provide evidence for a wide heterogeneity of required affinities between transcription factors and their binding sites in yeast
    • Lusk RW, Eisen,MB. Use of an evolutionary model to provide evidence for a wide heterogeneity of required affinities between transcription factors and their binding sites in yeast. Pac Symp Biocomput 2008, 489-500.
    • (2008) Pac Symp Biocomput , pp. 489-500
    • Lusk, R.W.1    Eisen, M.B.2
  • 120
    • 40549105160 scopus 로고    scopus 로고
    • Gordan R, HA. Using DNA duplex stability information for transcription factor binding site discovery. Presented at Pac Symp Biocomput. 2008 (In press).
    • Gordan R, HA. Using DNA duplex stability information for transcription factor binding site discovery. Presented at Pac Symp Biocomput. 2008 (In press).
  • 121
    • 40549122037 scopus 로고    scopus 로고
    • M, MRaB Functional trends in structural classes of the DNA binding domains of regulatory transcription factors. Presented at Pac Symp Biocompute. 2008 (In press).
    • M, MRaB Functional trends in structural classes of the DNA binding domains of regulatory transcription factors. Presented at Pac Symp Biocompute. 2008 (In press).
  • 122
    • 32144452542 scopus 로고    scopus 로고
    • Sequence features of DNA binding sites reveal structural class of associated transcription factor
    • Narlikar L, Hartemink AJ. Sequence features of DNA binding sites reveal structural class of associated transcription factor. Bioinformatics. 2006;22:157-63.
    • (2006) Bioinformatics , vol.22 , pp. 157-163
    • Narlikar, L.1    Hartemink, A.J.2
  • 123
    • 35348955882 scopus 로고    scopus 로고
    • A universal framework for regulatory element discovery across all genomes and data types
    • Elemento O, Slonim N, Tavazoie S. A universal framework for regulatory element discovery across all genomes and data types. Mol Cell. 2007;28:337-50.
    • (2007) Mol Cell , vol.28 , pp. 337-350
    • Elemento, O.1    Slonim, N.2    Tavazoie, S.3
  • 124
    • 34547540506 scopus 로고    scopus 로고
    • Discovering transcriptional regulatory regions in Drosophila by a nonalignment method for phylogenetic footprinting
    • Sosinsky A, Honig B, Mann RS, Califano A. Discovering transcriptional regulatory regions in Drosophila by a nonalignment method for phylogenetic footprinting. Proc Natl Acad Sci USA. 2007;104:6305-10.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 6305-6310
    • Sosinsky, A.1    Honig, B.2    Mann, R.S.3    Califano, A.4
  • 125
    • 34249080596 scopus 로고    scopus 로고
    • Theoretical analysis of epigenetic cell memory by nucleosome modification
    • Dodd IB, Micheelsen MA, Sneppen K, Thon G. Theoretical analysis of epigenetic cell memory by nucleosome modification. Cell. 2007;129:813-22.
    • (2007) Cell , vol.129 , pp. 813-822
    • Dodd, I.B.1    Micheelsen, M.A.2    Sneppen, K.3    Thon, G.4
  • 126
    • 37349024107 scopus 로고    scopus 로고
    • Modeling the regulatory network of histone acetylation in Saccharomyces cerevisiae
    • Pham H, Ferrari R, Cokus SJ, Kurdistani SK, Pellegrini M. Modeling the regulatory network of histone acetylation in Saccharomyces cerevisiae. Mol Syst Biol. 2007;3:153.
    • (2007) Mol Syst Biol , vol.3 , pp. 153
    • Pham, H.1    Ferrari, R.2    Cokus, S.J.3    Kurdistani, S.K.4    Pellegrini, M.5
  • 127
    • 33846351302 scopus 로고    scopus 로고
    • Precise physical models of protein-DNA interaction from high-throughput data
    • Kinney JB, Tkacik G, Callan CG Jr. Precise physical models of protein-DNA interaction from high-throughput data. Proc Natl Acad Sci U S A. 2007;104:501-6.
    • (2007) Proc Natl Acad Sci U S A , vol.104 , pp. 501-506
    • Kinney, J.B.1    Tkacik, G.2    Callan Jr., C.G.3
  • 128
    • 34548758543 scopus 로고    scopus 로고
    • Splicing in disease: Disruption of the splicing code and the decoding machinery
    • Wang GS, Cooper TA. Splicing in disease: disruption of the splicing code and the decoding machinery. Nat Rev Genet. 2007;8:749-61.
    • (2007) Nat Rev Genet , vol.8 , pp. 749-761
    • Wang, G.S.1    Cooper, T.A.2
  • 129
    • 34347260600 scopus 로고    scopus 로고
    • Living with noisy genes: How cells function reliably with inherent variability in gene expression
    • Maheshri N, O'Shea EK. Living with noisy genes: how cells function reliably with inherent variability in gene expression. Annu Rev Biophys Biomol Struct. 2007;36:413-34.
    • (2007) Annu Rev Biophys Biomol Struct , vol.36 , pp. 413-434
    • Maheshri, N.1    O'Shea, E.K.2
  • 130
    • 37549013383 scopus 로고    scopus 로고
    • The effects of molecular noise and size control on variability in the budding yeast cell cycle
    • Di Talia S, Skotheim JM, Bean JM, Siggia ED, Cross FR. The effects of molecular noise and size control on variability in the budding yeast cell cycle. Nature. 2007;450:1272.
    • (2007) Nature , vol.450 , pp. 1272
    • Di Talia, S.1    Skotheim, J.M.2    Bean, J.M.3    Siggia, E.D.4    Cross, F.R.5
  • 131
    • 25444468618 scopus 로고    scopus 로고
    • Noise in gene expression: Origins, consequences, and control
    • Raser JM, O'Shea EK. Noise in gene expression: origins, consequences, and control. Science. 2005;309:2010-3.
    • (2005) Science , vol.309 , pp. 2010-2013
    • Raser, J.M.1    O'Shea, E.K.2
  • 133
    • 34548411011 scopus 로고    scopus 로고
    • Systematic identification of cis-regulatory sequences active in mouse and human embryonic stem cells
    • Grskovic M, Chaivorapol C, Gaspar-Maia A, Li H, Ramalho-Santos M. Systematic identification of cis-regulatory sequences active in mouse and human embryonic stem cells. PLoS Genet. 2007;3:e145.
    • (2007) PLoS Genet , vol.3
    • Grskovic, M.1    Chaivorapol, C.2    Gaspar-Maia, A.3    Li, H.4    Ramalho-Santos, M.5
  • 134
    • 37349050790 scopus 로고    scopus 로고
    • The roles of binding site arrangement and combinatorial targeting in microRNA repression of gene expression
    • Hon LS, Zhang Z. The roles of binding site arrangement and combinatorial targeting in microRNA repression of gene expression. Genome Biol. 2007;8:R166.
    • (2007) Genome Biol , vol.8
    • Hon, L.S.1    Zhang, Z.2
  • 135
    • 34748821761 scopus 로고    scopus 로고
    • The role of site accessibility in microRNA target recognition
    • Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E. The role of site accessibility in microRNA target recognition. Nat Genet. 2007;39:1278-84.
    • (2007) Nat Genet , vol.39 , pp. 1278-1284
    • Kertesz, M.1    Iovino, N.2    Unnerstall, U.3    Gaul, U.4    Segal, E.5
  • 136
    • 34547555796 scopus 로고    scopus 로고
    • Global and local architecture of the mammalian microRNA-transcription factor regulatory network
    • Shalgi R, Lieber D, Oren M, Pilpel Y. Global and local architecture of the mammalian microRNA-transcription factor regulatory network. PLoS Comput Biol. 2007;3:e131.
    • (2007) PLoS Comput Biol , vol.3
    • Shalgi, R.1    Lieber, D.2    Oren, M.3    Pilpel, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.