메뉴 건너뛰기




Volumn 37, Issue , 2008, Pages 43-64

Unique rotary ATP synthase and its biological diversity

Author keywords

a subunit; Alkaliphilic bacteria; c ring stoichiometry; Driving force; Ion translocation; Ion binding site

Indexed keywords

ADENOSINE TRIPHOSPHATE; PROTON; PROTON TRANSPORTING ADENOSINE TRIPHOSPHATE SYNTHASE; SODIUM ION; ADENOSINE TRIPHOSPHATASE; MOLECULAR MOTOR; PROTON TRANSPORTING ADENOSINE TRIPHOSPHATASE;

EID: 48249108462     PISSN: 1936122X     EISSN: None     Source Type: Book Series    
DOI: 10.1146/annurev.biophys.37.032807.130018     Document Type: Review
Times cited : (150)

References (80)
  • 1
    • 34247877574 scopus 로고    scopus 로고
    • Aqueous access pathways in ATP synthase subunit a: Reactivity of cysteine substituted into transmembrane helices 1, 3 and 5
    • Angevine CM, Herold KA, Vincent OD, Fillingame RH. 2007. Aqueous access pathways in ATP synthase subunit a: reactivity of cysteine substituted into transmembrane helices 1, 3 and 5. J. Biol. Chem. 282:9001-7
    • (2007) J. Biol. Chem , vol.282 , pp. 9001-9007
    • Angevine, C.M.1    Herold, K.A.2    Vincent, O.D.3    Fillingame, R.H.4
  • 3
    • 0023825249 scopus 로고
    • Bioenergetic coupling to protonmotive force: Should we be considering hydronium ion coordination and not group protonation?
    • Boyer PD. 1988. Bioenergetic coupling to protonmotive force: Should we be considering hydronium ion coordination and not group protonation? Trends Biochem. Sci. 13:5-7
    • (1988) Trends Biochem. Sci , vol.13 , pp. 5-7
    • Boyer, P.D.1
  • 8
    • 0024977998 scopus 로고
    • 0 ATPase of Escherichia coli. Mutagenic analysis of the a subunit
    • 0 ATPase of Escherichia coli. Mutagenic analysis of the a subunit. J. Biol. Chem. 264:3292-300
    • (1989) J. Biol. Chem , vol.264 , pp. 3292-3300
    • Cain, B.D.1    Simoni, R.D.2
  • 13
    • 0032497925 scopus 로고    scopus 로고
    • Influence of divalent cations on nucleotide exchange and ATPase activity of chloroplast coupling factor 1
    • Digel JG, Moore ND, McCarty RE. 1998. Influence of divalent cations on nucleotide exchange and ATPase activity of chloroplast coupling factor 1. Biochemistry 37:17209-15
    • (1998) Biochemistry , vol.37 , pp. 17209-17215
    • Digel, J.G.1    Moore, N.D.2    McCarty, R.E.3
  • 14
    • 33645796449 scopus 로고    scopus 로고
    • Catalytic and mechanical cycles in F-ATP synthases. Fourth in the Cycles Review Series
    • 7:276-82
    • Dimroth P, von Ballmoos C, Meier T. 2006. Catalytic and mechanical cycles in F-ATP synthases. Fourth in the Cycles Review Series. EMBO Rep. 7:276-82
    • (2006) EMBO Rep
    • Dimroth, P.1    von Ballmoos, C.2    Meier, T.3
  • 17
    • 33745882947 scopus 로고    scopus 로고
    • 0-ATPase from the thermoalkaliphilic bacterium Clostridium paradoxum
    • 0-ATPase from the thermoalkaliphilic bacterium Clostridium paradoxum. J. Bacteriol. 188:5045-54
    • (2006) J. Bacteriol , vol.188 , pp. 5045-5054
    • Ferguson, S.A.1    Keis, S.2    Cook, G.M.3
  • 18
    • 0242657369 scopus 로고    scopus 로고
    • Mechanics of coupling proton movements to c-ring rotation in ATP synthase
    • Fillingame RH, Angevine CM, Dmitriev OY. 2003. Mechanics of coupling proton movements to c-ring rotation in ATP synthase. FEBS Lett. 555:29-34
    • (2003) FEBS Lett , vol.555 , pp. 29-34
    • Fillingame, R.H.1    Angevine, C.M.2    Dmitriev, O.Y.3
  • 19
    • 0034730636 scopus 로고    scopus 로고
    • The activity of the ATP synthase from Escherichia coli is regulated by the transmembrane proton motive force
    • Fischer S, Gräber P, Turina P. 2000. The activity of the ATP synthase from Escherichia coli is regulated by the transmembrane proton motive force. J. Biol. Chem. 275:30157-62
    • (2000) J. Biol. Chem , vol.275 , pp. 30157-30162
    • Fischer, S.1    Gräber, P.2    Turina, P.3
  • 22
    • 0028880405 scopus 로고
    • The essential arginine residue at position 210 in the a subunit of the Escherichia coli ATP synthase can be transferred to position 252 with partial retention of activity
    • Hatch LP, Cox GB, Howitt SM. 1995. The essential arginine residue at position 210 in the a subunit of the Escherichia coli ATP synthase can be transferred to position 252 with partial retention of activity. J. Biol. Chem. 270:29407-12
    • (1995) J. Biol. Chem , vol.270 , pp. 29407-29412
    • Hatch, L.P.1    Cox, G.B.2    Howitt, S.M.3
  • 24
    • 0034640206 scopus 로고    scopus 로고
    • Proton transfer reactions across bacteriorhodopsin and along the membrane
    • Heberle J. 2000. Proton transfer reactions across bacteriorhodopsin and along the membrane. Biochim. Biophys. Acta 1458:135-47
    • (2000) Biochim. Biophys. Acta , vol.1458 , pp. 135-147
    • Heberle, J.1
  • 26
    • 0025651603 scopus 로고
    • The ATPase of Bacillus alcalophilus. Purification and properties of the enzyme
    • Hoffmann A, Dimroth P. 1990. The ATPase of Bacillus alcalophilus. Purification and properties of the enzyme. Eur. J. Biochem. 194:423-30
    • (1990) Eur. J. Biochem , vol.194 , pp. 423-430
    • Hoffmann, A.1    Dimroth, P.2
  • 27
    • 0013866046 scopus 로고
    • ATP formation caused by acid-base transition of spinach chloroplasts
    • Jagendorf AT, Uribe E. 1966. ATP formation caused by acid-base transition of spinach chloroplasts. Proc. Natl. Acad. Sci. USA 55:170-77
    • (1966) Proc. Natl. Acad. Sci. USA , vol.55 , pp. 170-177
    • Jagendorf, A.T.1    Uribe, E.2
  • 28
    • 0032499690 scopus 로고    scopus 로고
    • 0 ATP synthase of Escherichia coli defined by disulfide cross-linking
    • 0 ATP synthase of Escherichia coli defined by disulfide cross-linking. Proc. Natl. Acad. Sci. USA 95:6607-12
    • (1998) Proc. Natl. Acad. Sci. USA , vol.95 , pp. 6607-6612
    • Jiang, W.1    Fillingame, R.H.2
  • 29
    • 0035942281 scopus 로고    scopus 로고
    • The preferred stoichiometry of c subunits in the rotary motor sector of Escherichia coli ATP synthase is 10
    • Jiang W, Hermolin J, Fillingame RH. 2001. The preferred stoichiometry of c subunits in the rotary motor sector of Escherichia coli ATP synthase is 10. Proc. Natl. Acad. Sci. USA 98:4966-71
    • (2001) Proc. Natl. Acad. Sci. USA , vol.98 , pp. 4966-4971
    • Jiang, W.1    Hermolin, J.2    Fillingame, R.H.3
  • 30
    • 0037133033 scopus 로고    scopus 로고
    • The carboxyl terminus of the epsilon subunit of the chloroplast ATP synthase is exposed during illumination
    • Johnson EA, McCarty RE. 2002. The carboxyl terminus of the epsilon subunit of the chloroplast ATP synthase is exposed during illumination. Biochemistry 41:2446-51
    • (2002) Biochemistry , vol.41 , pp. 2446-2451
    • Johnson, E.A.1    McCarty, R.E.2
  • 31
    • 0034613389 scopus 로고    scopus 로고
    • 1 ATP synthase from the cross-linking of subunits b and c in the Escherichia coli enzyme
    • 1 ATP synthase from the cross-linking of subunits b and c in the Escherichia coli enzyme. J. Biol. Chem. 275:31340-46
    • (2000) J. Biol. Chem , vol.275 , pp. 31340-31346
    • Jones, P.C.1    Hermolin, J.2    Jiang, W.3    Fillingame, R.H.4
  • 32
    • 0032531926 scopus 로고    scopus 로고
    • Voltage-generated torque drives the motor of the ATP synthase
    • Kaim G, Dimroth P. 1998. Voltage-generated torque drives the motor of the ATP synthase. EMBO J. 17:5887-95
    • (1998) EMBO J , vol.17 , pp. 5887-5895
    • Kaim, G.1    Dimroth, P.2
  • 33
    • 0033517144 scopus 로고    scopus 로고
    • ATP synthesis by F-type ATP synthase is obligatorily dependent on the transmembrane voltage
    • Kaim G, Dimroth P. 1999. ATP synthesis by F-type ATP synthase is obligatorily dependent on the transmembrane voltage. EMBO J. 18:4118-27
    • (1999) EMBO J , vol.18 , pp. 4118-4127
    • Kaim, G.1    Dimroth, P.2
  • 37
    • 33744767457 scopus 로고    scopus 로고
    • 0-ATP synthase is controlled by the C terminus of the epsilon subunit
    • 0-ATP synthase is controlled by the C terminus of the epsilon subunit. J. Bacteriol. 188:3796-804
    • (2006) J. Bacteriol , vol.188 , pp. 3796-3804
    • Keis, S.1    Stocker, A.2    Dimroth, P.3    Cook, G.M.4
  • 38
    • 0027052393 scopus 로고
    • 0 ATPase from Propionigenium modestum: Discovery of a membrane potential dependent step
    • 0 ATPase from Propionigenium modestum: discovery of a membrane potential dependent step. Biochemistry 31:12665-72
    • (1992) Biochemistry , vol.31 , pp. 12665-12672
    • Kluge, C.1    Dimroth, P.2
  • 39
    • 34447260787 scopus 로고    scopus 로고
    • 1 ATP synthase. Effect of repositioning within helix 4 of subunit a and helix 2 of subunit c
    • 1 ATP synthase. Effect of repositioning within helix 4 of subunit a and helix 2 of subunit c. Biochim. Biophys. Acta 1767:998-1005
    • (2007) Biochim. Biophys. Acta , vol.1767 , pp. 998-1005
    • Langemeyer, L.1    Engelbrecht, S.2
  • 40
    • 0016781255 scopus 로고
    • ATP synthesis driven by a protonmotive force in Streptococcus lactis
    • Maloney PC, Wilson TH. 1975. ATP synthesis driven by a protonmotive force in Streptococcus lactis. J. Membr. Biol. 25:285-310
    • (1975) J. Membr. Biol , vol.25 , pp. 285-310
    • Maloney, P.C.1    Wilson, T.H.2
  • 41
    • 34547137919 scopus 로고    scopus 로고
    • 0-ATP synthase enables ATP synthesis at high pH but not at neutral pH values
    • 0-ATP synthase enables ATP synthesis at high pH but not at neutral pH values. J. Biol. Chem. 282:17395-404
    • (2007) J. Biol. Chem , vol.282 , pp. 17395-17404
    • McMillan, D.G.1    Keis, S.2    Dimroth, P.3    Cook, G.M.4
  • 42
    • 34547908489 scopus 로고    scopus 로고
    • A tridecameric c ring of the adenosine triphosphate (ATP) synthase from the thermoalkaliphilic Bacillus sp. strain TA2.A1 facilitates ATP synthesis at low electrochemical proton potential
    • Meier T, Morgner N, Matthies D, Pogoryelov D, Keis S, et al. 2007. A tridecameric c ring of the adenosine triphosphate (ATP) synthase from the thermoalkaliphilic Bacillus sp. strain TA2.A1 facilitates ATP synthesis at low electrochemical proton potential. Mol. Microbiol. 65:1181-92
    • (2007) Mol. Microbiol , vol.65 , pp. 1181-1192
    • Meier, T.1    Morgner, N.2    Matthies, D.3    Pogoryelov, D.4    Keis, S.5
  • 44
    • 0038719727 scopus 로고    scopus 로고
    • A unique resting position of the ATP-synthase from chloroplasts
    • Mellwig C, Böttcher B. 2003. A unique resting position of the ATP-synthase from chloroplasts. J. Biol. Chem. 278:18544-49
    • (2003) J. Biol. Chem , vol.278 , pp. 18544-18549
    • Mellwig, C.1    Böttcher, B.2
  • 47
    • 0021759513 scopus 로고
    • Role of a disulfide bond in the gamma subunit in activation of the ATPase of chloroplast coupling factor 1
    • Nalin CM, McCarty RE. 1984. Role of a disulfide bond in the gamma subunit in activation of the ATPase of chloroplast coupling factor 1. J. Biol. Chem. 259:7275-80
    • (1984) J. Biol. Chem , vol.259 , pp. 7275-7280
    • Nalin, C.M.1    McCarty, R.E.2
  • 48
    • 1542743652 scopus 로고    scopus 로고
    • Regulatory role of the C-terminus of the epsilon subunit from the chloroplast ATP synthase
    • Nowak KF, McCarty RE. 2004. Regulatory role of the C-terminus of the epsilon subunit from the chloroplast ATP synthase. Biochemistry 43:3273-79
    • (2004) Biochemistry , vol.43 , pp. 3273-3279
    • Nowak, K.F.1    McCarty, R.E.2
  • 49
    • 32344451446 scopus 로고    scopus 로고
    • Phospholipids occupy the internal lumen of the c ring of the ATP synthase of Escherichia coli
    • Oberfeld B, Brunner J, Dimroth P. 2006. Phospholipids occupy the internal lumen of the c ring of the ATP synthase of Escherichia coli. Biochemistry 45:1841-51
    • (2006) Biochemistry , vol.45 , pp. 1841-1851
    • Oberfeld, B.1    Brunner, J.2    Dimroth, P.3
  • 50
    • 0017669547 scopus 로고
    • Purified proton conductor in proton translocating adenosine triphosphatase of a thermophilic bacterium
    • Okamoto H, Sone N, Hirata H, Yoshida M, Kagawa Y. 1977. Purified proton conductor in proton translocating adenosine triphosphatase of a thermophilic bacterium. J. Biol. Chem. 252:6125-31
    • (1977) J. Biol. Chem , vol.252 , pp. 6125-6131
    • Okamoto, H.1    Sone, N.2    Hirata, H.3    Yoshida, M.4    Kagawa, Y.5
  • 51
    • 0037207875 scopus 로고    scopus 로고
    • Bioenergetic properties of the thermoalkaliphilic Bacillus sp. strain TA2.A1
    • Olsson K, Keis S, Morgan HW, Dimroth P, Cook GM. 2003. Bioenergetic properties of the thermoalkaliphilic Bacillus sp. strain TA2.A1. J. Bacteriol. 185:461-65
    • (2003) J. Bacteriol , vol.185 , pp. 461-465
    • Olsson, K.1    Keis, S.2    Morgan, H.W.3    Dimroth, P.4    Cook, G.M.5
  • 54
    • 34547732425 scopus 로고    scopus 로고
    • The oligomeric state of c rings from cyanobacterial F-ATP synthases varies from 13 to 15
    • Pogoryelov D, Reichen C, Klyszejko AL, Brunisholz R, Müller DJ, et al. 2007. The oligomeric state of c rings from cyanobacterial F-ATP synthases varies from 13 to 15. J. Bacteriol. 189:5895-902
    • (2007) J. Bacteriol , vol.189 , pp. 5895-5902
    • Pogoryelov, D.1    Reichen, C.2    Klyszejko, A.L.3    Brunisholz, R.4    Müller, D.J.5
  • 56
    • 0021770639 scopus 로고
    • Preparation of the epsilon subunit and epsilon subunit-deficient chloroplast coupling factor 1 in reconstitutively active forms
    • Richter ML, Patrie WJ, McCarty RE. 1984. Preparation of the epsilon subunit and epsilon subunit-deficient chloroplast coupling factor 1 in reconstitutively active forms. J. Biol. Chem. 259:7371-73
    • (1984) J. Biol. Chem , vol.259 , pp. 7371-7373
    • Richter, M.L.1    Patrie, W.J.2    McCarty, R.E.3
  • 57
    • 0033623349 scopus 로고    scopus 로고
    • Structure of the γ-ε complex of ATP synthase
    • Rodgers AJ, Wilce MC. 2000. Structure of the γ-ε complex of ATP synthase. Nat. Struct. Biol. 7:1051-54
    • (2000) Nat. Struct. Biol , vol.7 , pp. 1051-1054
    • Rodgers, A.J.1    Wilce, M.C.2
  • 58
    • 0347504884 scopus 로고    scopus 로고
    • Structure of the mitochondrial ATP synthase by electron cryomicroscopy
    • Rubinstein JL, Walker JE, Henderson R. 2003. Structure of the mitochondrial ATP synthase by electron cryomicroscopy. EMBO J. 22:6182-92
    • (2003) EMBO J , vol.22 , pp. 6182-6192
    • Rubinstein, J.L.1    Walker, J.E.2    Henderson, R.3
  • 59
    • 33845989502 scopus 로고    scopus 로고
    • Cross-linking between helices within subunit a of Escherichia coli ATP synthase defines the transmembrane packing of a four-helix bundle
    • Schwem BE, Fillingame RH. 2006. Cross-linking between helices within subunit a of Escherichia coli ATP synthase defines the transmembrane packing of a four-helix bundle. J. Biol. Chem. 281:37861-67
    • (2006) J. Biol. Chem , vol.281 , pp. 37861-37867
    • Schwem, B.E.1    Fillingame, R.H.2
  • 61
    • 0017405283 scopus 로고
    • Adenosine triphosphate synthesis by electrochemical proton gradient in vesicles reconstituted from purified adenosine triphosphatase and phospholipids of thermophilic bacterium
    • Sone N, Yoshida M, Hirata H, Kagawa Y. 1977. Adenosine triphosphate synthesis by electrochemical proton gradient in vesicles reconstituted from purified adenosine triphosphatase and phospholipids of thermophilic bacterium. J. Biol. Chem. 252:2956-60
    • (1977) J. Biol. Chem , vol.252 , pp. 2956-2960
    • Sone, N.1    Yoshida, M.2    Hirata, H.3    Kagawa, Y.4
  • 63
    • 0033607504 scopus 로고    scopus 로고
    • Molecular architecture of the rotary motor in ATP synthase
    • Stock D, Leslie AG, Walker JE. 1999. Molecular architecture of the rotary motor in ATP synthase. Science 286:1700-5
    • (1999) Science , vol.286 , pp. 1700-1705
    • Stock, D.1    Leslie, A.G.2    Walker, J.E.3
  • 65
    • 0345306622 scopus 로고    scopus 로고
    • 1-ATPase/synthase is geared to the synthesis mode by conformational rearrangement of epsilon subunit in response to proton motive force and ADP/ATP balance
    • 1-ATPase/synthase is geared to the synthesis mode by conformational rearrangement of epsilon subunit in response to proton motive force and ADP/ATP balance. J. Biol. Chem. 278:46840-46
    • (2003) J. Biol. Chem , vol.278 , pp. 46840-46846
    • Suzuki, T.1    Murakami, T.2    Iino, R.3    Suzuki, J.4    Ono, S.5
  • 66
    • 0016734775 scopus 로고
    • Kinetics of adenosine triphosphate synthesis in bovine heart submitochondrial particles
    • Thayer WS, Hinkle PC. 1975. Kinetics of adenosine triphosphate synthesis in bovine heart submitochondrial particles. J. Biol. Chem. 250:5336-42
    • (1975) J. Biol. Chem , vol.250 , pp. 5336-5342
    • Thayer, W.S.1    Hinkle, P.C.2
  • 67
    • 0016769885 scopus 로고
    • Synthesis of adenosine triphosphate by an artificially imposed electrochemical proton gradient in bovine heart submitochondrial particles
    • Thayer WS, Hinkle PC. 1975. Synthesis of adenosine triphosphate by an artificially imposed electrochemical proton gradient in bovine heart submitochondrial particles. J. Biol. Chem. 250:5330-35
    • (1975) J. Biol. Chem , vol.250 , pp. 5330-5335
    • Thayer, W.S.1    Hinkle, P.C.2
  • 68
    • 0017128160 scopus 로고
    • Adenosine 5′-triphosphate synthesis energized by an artificially imposed membrane potential in membrane vesicles of Escherichia coli
    • Tsuchiya T, Rosen BP. 1976. Adenosine 5′-triphosphate synthesis energized by an artificially imposed membrane potential in membrane vesicles of Escherichia coli. J. Bacteriol. 127:154-61
    • (1976) J. Bacteriol , vol.127 , pp. 154-161
    • Tsuchiya, T.1    Rosen, B.P.2
  • 70
    • 0030611634 scopus 로고    scopus 로고
    • Crystal structure of the epsilon subunit of the proton-translocating ATP synthase from Escherichia coli
    • Uhlin U, Cox GB, Guss JM. 1997. Crystal structure of the epsilon subunit of the proton-translocating ATP synthase from Escherichia coli. Structure 5:1219-30
    • (1997) Structure , vol.5 , pp. 1219-1230
    • Uhlin, U.1    Cox, G.B.2    Guss, J.M.3
  • 72
    • 35448959682 scopus 로고    scopus 로고
    • Two distinct proton binding sites in the ATP synthase family
    • von Ballmoos C, Dimroth P. 2007. Two distinct proton binding sites in the ATP synthase family. Biochemistry 46:11800-9
    • (2007) Biochemistry , vol.46 , pp. 11800-11809
    • von Ballmoos, C.1    Dimroth, P.2
  • 75
    • 2942718765 scopus 로고    scopus 로고
    • Replacement of amino acid sequence features of a- and c-subunits of ATP synthases of alkaliphilic Bacillus with the Bacillus consensus sequence results in defective oxidative phosphorylation and nonfermentative growth at pH 10.5
    • Wang Z, Hicks DB, Guffanti AA, Baldwin K, Krulwich TA. 2004. Replacement of amino acid sequence features of a- and c-subunits of ATP synthases of alkaliphilic Bacillus with the Bacillus consensus sequence results in defective oxidative phosphorylation and nonfermentative growth at pH 10.5. J. Biol. Chem. 279:26546-54
    • (2004) J. Biol. Chem , vol.279 , pp. 26546-26554
    • Wang, Z.1    Hicks, D.B.2    Guffanti, A.A.3    Baldwin, K.4    Krulwich, T.A.5
  • 76
    • 0036383051 scopus 로고    scopus 로고
    • 0 motor probed by mutational analyses of subunit a
    • 0 motor probed by mutational analyses of subunit a. J. Mol. Biol. 322:369-81
    • (2002) J. Mol. Biol , vol.322 , pp. 369-381
    • Wehrle, F.1    Kaim, G.2    Dimroth, P.3
  • 77
    • 0032500380 scopus 로고    scopus 로고
    • 1-ATPase from Escherichia coli and interactions of this subunit with β subunits in the complex
    • 1-ATPase from Escherichia coli and interactions of this subunit with β subunits in the complex. J. Biol. Chem. 273:26645-51
    • (1998) J. Biol. Chem , vol.273 , pp. 26645-26651
    • Wilkens, S.1
  • 78
    • 0017293282 scopus 로고
    • Protonmotive force as the source of energy for adenosine 5′-triphosphate synthesis in Escherichia coli
    • Wilson DM, Alderette JF, Maloney PC, Wilson TH. 1976. Protonmotive force as the source of energy for adenosine 5′-triphosphate synthesis in Escherichia coli. J. Bacteriol. 126:327-37
    • (1976) J. Bacteriol , vol.126 , pp. 327-337
    • Wilson, D.M.1    Alderette, J.F.2    Maloney, P.C.3    Wilson, T.H.4
  • 80
    • 0347533008 scopus 로고    scopus 로고
    • Proton-translocating ATP-synthase of Paracoccus denitrificans: ATP-hydrolytic activity
    • Zharova TV, Vinogradov AD. 2003. Proton-translocating ATP-synthase of Paracoccus denitrificans: ATP-hydrolytic activity. Biochemistry (Moscow) 68:1101-8
    • (2003) Biochemistry (Moscow) , vol.68 , pp. 1101-1108
    • Zharova, T.V.1    Vinogradov, A.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.