-
2
-
-
0021404192
-
Eigenvalues of the Laplacian in two dimensions
-
Kuttler J R and Sigillito V G 1984 Eigenvalues of the Laplacian in two dimensions SIAM Rev. 26 163-93
-
(1984)
SIAM Rev.
, vol.26
, Issue.2
, pp. 163-193
-
-
Kuttler, J.R.1
Sigillito, V.G.2
-
3
-
-
24644510080
-
An elliptic eigenvalue problem for a reentrant region
-
Reid J K and Walsh J E 1965 An elliptic eigenvalue problem for a reentrant region J. Soc. Indust. Appl. Math. 13 837-50
-
(1965)
J. Soc. Indust. Appl. Math.
, vol.13
, Issue.3
, pp. 837-850
-
-
Reid, J.K.1
Walsh, J.E.2
-
4
-
-
0003003063
-
Approximations and bounds for eigenvalues of elliptic operators
-
Fox L, Henrici P and Moler C B 1967 Approximations and bounds for eigenvalues of elliptic operators SIAM J. Numer. Anal. 4 89-102
-
(1967)
SIAM J. Numer. Anal.
, vol.4
, Issue.1
, pp. 89-102
-
-
Fox, L.1
Henrici, P.2
Moler, C.B.3
-
5
-
-
0009031763
-
Chebyshev polynomial approximations for the L-membrane eigenvalue problem
-
Mason J C 1967 Chebyshev polynomial approximations for the L-membrane eigenvalue problem SIAM J. Appl. Math. 15 172
-
(1967)
SIAM J. Appl. Math.
, vol.15
, Issue.1
, pp. 172
-
-
Mason, J.C.1
-
6
-
-
0012818578
-
Use of trigonometric terms in the finite element method with application to vibrating membranes
-
Milsted M C and Hutchinson J R 1974 Use of trigonometric terms in the finite element method with application to vibrating membranes J. Sound Vib. 32 327-46
-
(1974)
J. Sound Vib.
, vol.32
, Issue.3
, pp. 327-346
-
-
Milsted, M.C.1
Hutchinson, J.R.2
-
7
-
-
0021180248
-
A numerical solution of the membrane eigenvalue problem
-
Sideridis A B 1984 A numerical solution of the membrane eigenvalue problem Computing 32 167-76
-
(1984)
Computing
, vol.32
, Issue.2
, pp. 167-176
-
-
Sideridis, A.B.1
-
8
-
-
38249029372
-
Finite element eigenvalues for the Laplacian over an L-shaped domain
-
Schiff B 1988 Finite element eigenvalues for the Laplacian over an L-shaped domain J. Comput. Phys. 76 233-42
-
(1988)
J. Comput. Phys.
, vol.76
, Issue.2
, pp. 233-242
-
-
Schiff, B.1
-
9
-
-
10644280743
-
Computing eigenmodes of elliptic operators using radial basis functions
-
Platte R B and Driscoll T A 2004 Computing eigenmodes of elliptic operators using radial basis functions Comput. Math. Appl. 48 561-76
-
(2004)
Comput. Math. Appl.
, vol.48
, Issue.3-4
, pp. 561-576
-
-
Platte, R.B.1
Driscoll, T.A.2
-
10
-
-
24644462685
-
Reviving the method of particular solutions
-
Betcke T and Trefethen L N 2005 Reviving the method of particular solutions SIAM Rev. 47 469-91
-
(2005)
SIAM Rev.
, vol.47
, Issue.3
, pp. 469-491
-
-
Betcke, T.1
Trefethen, L.N.2
-
11
-
-
43049126656
-
Computed eigenmodes of planar regions
-
Trefethen L N and Betcke T 2006 Computed eigenmodes of planar regions AMS Contemp. Math. 412 297-314
-
(2006)
AMS Contemp. Math.
, vol.412
, pp. 297-314
-
-
Trefethen, L.N.1
Betcke, T.2
-
12
-
-
0033471502
-
Expansion method for stationary states of quantum billiards
-
Kaufman D L, Kosztin I and Schulten K 1999 Expansion method for stationary states of quantum billiards Am. J. Phys. 67 133-41
-
(1999)
Am. J. Phys.
, vol.67
, Issue.2
, pp. 133-141
-
-
Kaufman, D.L.1
Kosztin, I.2
Schulten, K.3
-
14
-
-
33947522608
-
Alternative representation of nonlocal operators and path integrals
-
Amore P 2007 Alternative representation of nonlocal operators and path integrals Phys. Rev. A 75 032111
-
(2007)
Phys. Rev.
, vol.75
, Issue.3
, pp. 032111
-
-
Amore, P.1
-
15
-
-
33748866767
-
Improved eigenvalues sums for inferring quantum billiards
-
Berry M V 1987 Improved eigenvalues sums for inferring quantum billiards J. Phys. A: Math. Gen. 20 2389-403
-
(1987)
J. Phys. A: Math. Gen.
, vol.20
, Issue.9
, pp. 2389-2403
-
-
Berry, M.V.1
-
16
-
-
0002697827
-
Can one hear the shape of a drum?
-
Kac M 1966 Can one hear the shape of a drum? Am. Math. Mon. 73 1-23
-
(1966)
Am. Math. Mon.
, vol.73
, Issue.4
, pp. 1-23
-
-
Kac, M.1
-
17
-
-
33746818176
-
Isospectral plane domains and surfaces via Riemannian orbifolds
-
Gordon C, Webb D and Wolpert S 1992 Isospectral plane domains and surfaces via Riemannian orbifolds Invent. Math. 110 1-22
-
(1992)
Invent. Math.
, vol.110
, Issue.1
, pp. 1-22
-
-
Gordon, C.1
Webb, D.2
Wolpert, S.3
-
18
-
-
0001484257
-
Experiments on not 'hearing the shape' of drums
-
Sridhar S and Kudrolli L 1994 Experiments on not 'hearing the shape' of drums Phys. Rev. Lett. 72 2175-8
-
(1994)
Phys. Rev. Lett.
, vol.72
, Issue.14
, pp. 2175-2178
-
-
Sridhar, S.1
Kudrolli, L.2
-
20
-
-
0000134036
-
Numerical investigation of isospectral cavities built from triangles
-
Wu H, Sprung D W L and Martorell J 1995 Numerical investigation of isospectral cavities built from triangles Phys. Rev. E 51 703-8
-
(1995)
Phys. Rev.
, vol.51
, Issue.1
, pp. 703-708
-
-
Wu, H.1
Sprung, D.W.L.2
Martorell, J.3
-
21
-
-
0031100472
-
Eigenmodes of isospectral drums
-
Driscoll T A 1997 Eigenmodes of isospectral drums SIAM Rev. 39 1-17
-
(1997)
SIAM Rev.
, vol.39
, Issue.1
, pp. 1-17
-
-
Driscoll, T.A.1
-
23
-
-
48249128197
-
The sound of an unusual drum
-
Trott M 2005 The sound of an unusual drum Math. J. 9 (3)
-
(2005)
Math. J.
, vol.9
, pp. 3
-
-
Trott, M.1
-
26
-
-
0001699928
-
Localization in fractal drums: An experimental study
-
Even C, Russ S, Repain V, Pieranski P and Sapoval B 1999 Localization in fractal drums: an experimental study Phys. Rev. Lett. 83 726-9
-
(1999)
Phys. Rev. Lett.
, vol.83
, Issue.4
, pp. 726-729
-
-
Even, C.1
Russ, S.2
Repain, V.3
Pieranski, P.4
Sapoval, B.5
-
27
-
-
0007013696
-
Spectral distribution of drums with fractal perimeters: The Weyl-Berry-Lapidus conjecture
-
Hobiki Y, Yakubo K and Nakayama T 1995 Spectral distribution of drums with fractal perimeters: the Weyl-Berry-Lapidus conjecture Phys. Rev. E 52 R1310-2
-
(1995)
Phys. Rev.
, vol.52
, Issue.2
-
-
Hobiki, Y.1
Yakubo, K.2
Nakayama, T.3
-
28
-
-
33644858405
-
Computing eigenfunctions on the Koch snowflake: A new grid and symmetry
-
Neuberger J M, Sieben N and Swift J W 2006 Computing eigenfunctions on the Koch snowflake: a new grid and symmetry J. Comput. Appl. Math. 191 126-42
-
(2006)
J. Comput. Appl. Math.
, vol.191
, Issue.1
, pp. 126-142
-
-
Neuberger, J.M.1
Sieben, N.2
Swift, J.W.3
-
29
-
-
33748422705
-
Eigenfrequencies of fractal drums
-
Banjai L 2007 Eigenfrequencies of fractal drums J. Comput. Appl. Math. 198 1-18
-
(2007)
J. Comput. Appl. Math.
, vol.198
, Issue.1
, pp. 1-18
-
-
Banjai, L.1
-
30
-
-
24244481822
-
Quantum bound states in a classically unbound system of crossed wires
-
Schult R L, Ravenhall D G and Wyld H W 1989 Quantum bound states in a classically unbound system of crossed wires Phys. Rev. B 39 5476-9
-
(1989)
Phys. Rev.
, vol.39
, Issue.8
, pp. 5476-5479
-
-
Schult, R.L.1
Ravenhall, D.G.2
Wyld, H.W.3
-
32
-
-
0346671357
-
On the spectrum of the Dirichlet Laplacian on broken strips
-
Levin D 2004 On the spectrum of the Dirichlet Laplacian on broken strips J. Phys. A: Math. Gen. 37 L9-11
-
(2004)
J. Phys. A: Math. Gen.
, vol.37
, Issue.1
, pp. 9-11
-
-
Levin, D.1
-
33
-
-
0002707892
-
Bound states in twisting tubes
-
Goldstone J and Jaffe R L 1992 Bound states in twisting tubes Phys. Rev. B 45 14100-7
-
(1992)
Phys. Rev.
, vol.45
, Issue.24
, pp. 14100-14107
-
-
Goldstone, J.1
Jaffe, R.L.2
-
34
-
-
0024054719
-
Density distribution for isospectral circular membranes
-
Gottlieb H P W 1988 Density distribution for isospectral circular membranes SIAM J. Appl. Math. 48 948-51
-
(1988)
SIAM J. Appl. Math.
, vol.48
, Issue.4
, pp. 948-951
-
-
Gottlieb, H.P.W.1
-
35
-
-
33646873496
-
A variational sinc collocation method for strong-coupling problems
-
Amore P 2006 A variational sinc collocation method for strong-coupling problems J. Phys. A 39 L349-55
-
(2006)
J. Phys.
, vol.39
, Issue.22
-
-
Amore, P.1
|