메뉴 건너뛰기




Volumn 27, Issue 17, 2008, Pages 3286-3300

Using the bootstrap to improve estimation and confidence intervals for regression coefficients selected using backwards variable elimination

Author keywords

Automated variable selection; Backwards variable elimination; Bootstrap; Confidence intervals; Monte Carlo simulations; Regression models

Indexed keywords

ARTICLE; BACKWARDS VARIABLE ELIMINATION; BOOTSTRAPPING; CONFIDENCE INTERVAL; CONTROLLED STUDY; CORRELATION COEFFICIENT; FEMALE; HEART INFARCTION; HUMAN; LEARNING ALGORITHM; LOGISTIC REGRESSION ANALYSIS; MAJOR CLINICAL STUDY; MONTE CARLO METHOD; NONPARAMETRIC TEST; REGRESSION ANALYSIS; STATISTICS;

EID: 48249087696     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.3104     Document Type: Article
Times cited : (54)

References (29)
  • 3
    • 0017280570 scopus 로고
    • The analysis and selection of variables in linear regression
    • Hocking RR. The analysis and selection of variables in linear regression. Biometrics 1976; 32:1-49.
    • (1976) Biometrics , vol.32 , pp. 1-49
    • Hocking, R.R.1
  • 4
    • 85004844353 scopus 로고
    • Backward, forward and stepwise automated subset selection algorithms: Frequency of obtaining authentic and noise variables
    • Derkson S, Keselman HJ. Backward, forward and stepwise automated subset selection algorithms: frequency of obtaining authentic and noise variables. British Journal of Mathematical and Statistical Psychology 1992; 45:265-282.
    • (1992) British Journal of Mathematical and Statistical Psychology , vol.45 , pp. 265-282
    • Derkson, S.1    Keselman, H.J.2
  • 5
    • 84952499789 scopus 로고
    • Frequency of selecting noise variables in subset regression analysis: A simulation study
    • Flack VF, Chang PC. Frequency of selecting noise variables in subset regression analysis: a simulation study. The American Statistician 1987; 14:84-86.
    • (1987) The American Statistician , vol.14 , pp. 84-86
    • Flack, V.F.1    Chang, P.C.2
  • 7
    • 0009020169 scopus 로고
    • Estimating the residual variance in orthogonal regression with variable selection
    • Copas JB, Long T. Estimating the residual variance in orthogonal regression with variable selection. The Statistician 1991; 40:51-59.
    • (1991) The Statistician , vol.40 , pp. 51-59
    • Copas, J.B.1    Long, T.2
  • 8
    • 9644265270 scopus 로고    scopus 로고
    • Automated variable selection methods for logistic regression result in unstable models for predicting AMI mortality
    • Austin PC, Tu JV. Automated variable selection methods for logistic regression result in unstable models for predicting AMI mortality. Journal of Clinical Epidemiology 2004; 57:1138-1146.
    • (2004) Journal of Clinical Epidemiology , vol.57 , pp. 1138-1146
    • Austin, P.C.1    Tu, J.V.2
  • 10
    • 0001159321 scopus 로고
    • The impact of model selection on inference in linear regression
    • Hurvich CM, Tsai C-L. The impact of model selection on inference in linear regression. The American Statistician 1990; 44:214-217.
    • (1990) The American Statistician , vol.44 , pp. 214-217
    • Hurvich, C.M.1    Tsai, C.-L.2
  • 12
    • 34250613098 scopus 로고    scopus 로고
    • A comparison of classification and regression trees, logistic regression, generalized additive models, and multivariate adaptive regression splines for predicting AMI mortality
    • Austin PC. A comparison of classification and regression trees, logistic regression, generalized additive models, and multivariate adaptive regression splines for predicting AMI mortality. Statistics in Medicine 2007; 26:2937-2957.
    • (2007) Statistics in Medicine , vol.26 , pp. 2937-2957
    • Austin, P.C.1
  • 13
    • 33745466638 scopus 로고    scopus 로고
    • A comparison of propensity score methods: A case-study estimating the effectiveness of post-AMI statin use
    • Austin PC, Mamdani MM. A comparison of propensity score methods: a case-study estimating the effectiveness of post-AMI statin use. Statistics in Medicine 2006; 25:2084-2106.
    • (2006) Statistics in Medicine , vol.25 , pp. 2084-2106
    • Austin, P.C.1    Mamdani, M.M.2
  • 15
    • 33646120305 scopus 로고    scopus 로고
    • Missed opportunities in the secondary prevention of myocardial infarction: An assessment of the effects of satin underprescribing on mortality
    • Austin PC, Mamdani MM, Juurlink DN, Alter DA, Tu JV. Missed opportunities in the secondary prevention of myocardial infarction: an assessment of the effects of satin underprescribing on mortality. American Heart Journal 2006; 151:969-975.
    • (2006) American Heart Journal , vol.151 , pp. 969-975
    • Austin, P.C.1    Mamdani, M.M.2    Juurlink, D.N.3    Alter, D.A.4    Tu, J.V.5
  • 16
    • 19144368778 scopus 로고    scopus 로고
    • The use of the propensity score for estimating treatment effects: Administrative versus clinical data
    • Austin PC, Mamdani MM, Stukel TA, Anderson GM, Tu JV. The use of the propensity score for estimating treatment effects: administrative versus clinical data. Statistics in Medicine 2005; 24:1563-1578.
    • (2005) Statistics in Medicine , vol.24 , pp. 1563-1578
    • Austin, P.C.1    Mamdani, M.M.2    Stukel, T.A.3    Anderson, G.M.4    Tu, J.V.5
  • 18
    • 0034732710 scopus 로고    scopus 로고
    • Prognostic modeling with logistic regression analysis: A comparison of selection and estimation methods in small datasets
    • Steyerberg EW, Eijkemans MJC, Harrell Jr FE, Habbema JDF. Prognostic modeling with logistic regression analysis: a comparison of selection and estimation methods in small datasets. Statistics in Medicine 2000; 19:1059-1079.
    • (2000) Statistics in Medicine , vol.19 , pp. 1059-1079
    • Steyerberg, E.W.1    Eijkemans, M.J.C.2    Harrell Jr, F.E.3    Habbema, J.D.F.4
  • 19
    • 28444445926 scopus 로고    scopus 로고
    • R Core Development Team, R Foundation for Statistical Computing: Vienna
    • R Core Development Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, 2005.
    • (2005) R: A Language and Environment for Statistical Computing
  • 21
    • 0027081755 scopus 로고
    • A bootstrap resampling procedure for model building: Application to the Cox regression model
    • Sauerbrei W, Schumacher M. A bootstrap resampling procedure for model building: application to the Cox regression model. Statistics in Medicine 1992; 11:2093-2109.
    • (1992) Statistics in Medicine , vol.11 , pp. 2093-2109
    • Sauerbrei, W.1    Schumacher, M.2
  • 22
    • 2442426473 scopus 로고    scopus 로고
    • Bootstrap methods for developing predictive models in cardiovascular research
    • Austin PC, Tu JV. Bootstrap methods for developing predictive models in cardiovascular research. The American Statistician 2004; 58:131-137.
    • (2004) The American Statistician , vol.58 , pp. 131-137
    • Austin, P.C.1    Tu, J.V.2
  • 25
    • 33751199359 scopus 로고    scopus 로고
    • Rice TW, Khuntia D, Rybicki LA, Adelstein DJ, Vogelbaum MA, Mason DP, Murthy SC, Blackstone EH. Brain metastases from esophageal cancer: a phenomenon of adjuvant therapy? Annals of Thoracic Surgery 2006; 82(6):2042-2049, 2049, e1-e2.
    • Rice TW, Khuntia D, Rybicki LA, Adelstein DJ, Vogelbaum MA, Mason DP, Murthy SC, Blackstone EH. Brain metastases from esophageal cancer: a phenomenon of adjuvant therapy? Annals of Thoracic Surgery 2006; 82(6):2042-2049, 2049, e1-e2.
  • 26
    • 33745189383 scopus 로고    scopus 로고
    • NETT Research Group. Patient and surgical factors influencing air leak after lung volume reduction surgery: Lessons learned from the National Emphysema Treatment Trial
    • DeCamp MM, Blackstone EH, Naunheim KS, Krasna MJ, Wood DE, Meli YM, McKenna Jr RJ, NETT Research Group. Patient and surgical factors influencing air leak after lung volume reduction surgery: lessons learned from the National Emphysema Treatment Trial. Annals of Thoracic Surgery 2006; 82(1): 197-206.
    • (2006) Annals of Thoracic Surgery , vol.82 , Issue.1 , pp. 197-206
    • DeCamp, M.M.1    Blackstone, E.H.2    Naunheim, K.S.3    Krasna, M.J.4    Wood, D.E.5    Meli, Y.M.6    McKenna Jr, R.J.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.