메뉴 건너뛰기




Volumn 41, Issue 11, 2008, Pages 3287-3294

Feature extraction using constrained maximum variance mapping

Author keywords

Feature extraction; LDA; LPP; Multi manifolds learning; MVP; Subspace; UDP

Indexed keywords

APPROXIMATION ALGORITHMS; CANNING; CONFORMAL MAPPING; DATABASE SYSTEMS; DISCRIMINANT ANALYSIS; EDUCATION; EIGENVALUES AND EIGENFUNCTIONS; EXTRACTION; FACE RECOGNITION; LEARNING ALGORITHMS; MATHEMATICAL TRANSFORMATIONS;

EID: 48149086066     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2008.05.014     Document Type: Article
Times cited : (125)

References (41)
  • 1
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum J.B., de Silva V., and Langford J.C. A global geometric framework for nonlinear dimensionality reduction. Science 290 (2000) 2319-2323
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.B.1    de Silva, V.2    Langford, J.C.3
  • 2
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis S.T., and Saul L.K. Nonlinear dimensionality reduction by locally linear embedding. Science 290 (2000) 2323-2326
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 3
    • 2342517502 scopus 로고    scopus 로고
    • Think globally, fit locally: unsupervised learning of low dimensional manifolds
    • Saul L.K., and Roweis S.T. Think globally, fit locally: unsupervised learning of low dimensional manifolds. J. Mach. Learn. Res. 1 4 (2003) 119-155
    • (2003) J. Mach. Learn. Res. , vol.1 , Issue.4 , pp. 119-155
    • Saul, L.K.1    Roweis, S.T.2
  • 4
    • 84880203756 scopus 로고    scopus 로고
    • Laplacian eigenmaps and spectral techniques for embedding and clustering
    • Dietterich T.G., Becker S., and Ghahramani Z. (Eds), MIT Press, Cambridge, MA, USA
    • Belkin M., and Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Dietterich T.G., Becker S., and Ghahramani Z. (Eds). Advances in Neural Information Processing Systems vol. 14 (2002), MIT Press, Cambridge, MA, USA 585-591
    • (2002) Advances in Neural Information Processing Systems , vol.14 , pp. 585-591
    • Belkin, M.1    Niyogi, P.2
  • 5
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • Belkin M., and Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15 6 (2003) 1373-1396
    • (2003) Neural Comput. , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 6
    • 0037948870 scopus 로고    scopus 로고
    • Hessian eigenmaps: locally linear embedding techniques for high-dimensional data
    • Donoho D.L., and Grimes C.E. Hessian eigenmaps: locally linear embedding techniques for high-dimensional data. Proc. Natl. Acad. Arts Sci. 110 (2003) 5591-5596
    • (2003) Proc. Natl. Acad. Arts Sci. , vol.110 , pp. 5591-5596
    • Donoho, D.L.1    Grimes, C.E.2
  • 7
    • 33744949513 scopus 로고    scopus 로고
    • Unsupervised learning of image manifolds by semidefinite programming
    • Weinberger K.Q., and Saul L.K. Unsupervised learning of image manifolds by semidefinite programming. Int. J. Comput. Vision 70 1 (2006) 77-90
    • (2006) Int. J. Comput. Vision , vol.70 , Issue.1 , pp. 77-90
    • Weinberger, K.Q.1    Saul, L.K.2
  • 8
    • 14544307975 scopus 로고    scopus 로고
    • Principal manifolds and nonlinear dimensionality reduction by local tangent space alignment
    • Zhang Z., and Zha H. Principal manifolds and nonlinear dimensionality reduction by local tangent space alignment. SIAM J. Sci. Comput. 26 1 (2004) 313-338
    • (2004) SIAM J. Sci. Comput. , vol.26 , Issue.1 , pp. 313-338
    • Zhang, Z.1    Zha, H.2
  • 9
    • 34250702177 scopus 로고    scopus 로고
    • N.D. Lawrence, J. Quiñonero-Candela, Local distance preservation in the GP-LVM through back constraints, in: Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, PA, 2006.
    • N.D. Lawrence, J. Quiñonero-Candela, Local distance preservation in the GP-LVM through back constraints, in: Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, PA, 2006.
  • 13
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Scholkopf B., Smola A., and Muller K.R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10 5 (1998) 1299-1319
    • (1998) Neural Comput. , vol.10 , Issue.5 , pp. 1299-1319
    • Scholkopf, B.1    Smola, A.2    Muller, K.R.3
  • 14
    • 0038633559 scopus 로고    scopus 로고
    • Constructing descriptive and discriminative nonlinear features: Rayleigh coefficients in kernel feature spaces
    • Mika S., Ratsch G., Weston J., Scholkopf B., Smola A., and Muller K.-R. Constructing descriptive and discriminative nonlinear features: Rayleigh coefficients in kernel feature spaces. IEEE Trans. Pattern Anal. Mach. Intell. 25 5 (2003) 623-628
    • (2003) IEEE Trans. Pattern Anal. Mach. Intell. , vol.25 , Issue.5 , pp. 623-628
    • Mika, S.1    Ratsch, G.2    Weston, J.3    Scholkopf, B.4    Smola, A.5    Muller, K.-R.6
  • 15
    • 13844299267 scopus 로고    scopus 로고
    • Foley-Sammon optimal discriminant vectors using kernel approach
    • Zheng W., Zhao L., and Zou C. Foley-Sammon optimal discriminant vectors using kernel approach. IEEE Trans. Neural Networks 16 1 (2005) 1-9
    • (2005) IEEE Trans. Neural Networks , vol.16 , Issue.1 , pp. 1-9
    • Zheng, W.1    Zhao, L.2    Zou, C.3
  • 16
    • 48149104713 scopus 로고    scopus 로고
    • Y. Bengio, J.-F. Paiement, P. Vincent, Out-of-sample extensions for LLE, Isomap, MDS, eigenmaps, and spectral clustering, Technical Report 1238, Université de Montreal, 2003.
    • Y. Bengio, J.-F. Paiement, P. Vincent, Out-of-sample extensions for LLE, Isomap, MDS, eigenmaps, and spectral clustering, Technical Report 1238, Université de Montreal, 2003.
  • 17
    • 48149087498 scopus 로고    scopus 로고
    • M. Brand, Charting a manifold, in: Proceedings of the 15th Conference on Neural Information Processing Systems, 2002.
    • M. Brand, Charting a manifold, in: Proceedings of the 15th Conference on Neural Information Processing Systems, 2002.
  • 19
    • 33947492041 scopus 로고    scopus 로고
    • Globally maximizing, locally minimizing: unsupervised discriminant projection with application to face and palm biometrics
    • Yang J., Zhang D., Yang J.Y., and Niu B. Globally maximizing, locally minimizing: unsupervised discriminant projection with application to face and palm biometrics. IEEE Trans. Pattern Anal. Mach. Intell. 29 4 (2007) 650-664
    • (2007) IEEE Trans. Pattern Anal. Mach. Intell. , vol.29 , Issue.4 , pp. 650-664
    • Yang, J.1    Zhang, D.2    Yang, J.Y.3    Niu, B.4
  • 20
    • 33947511701 scopus 로고    scopus 로고
    • O. Kouropteva, O. Okun, M. Pietikainen, Supervised locally linear embedding algorithm for pattern recognition, Lecture Notes in Computer Science, vol. 2652, 2003, pp. 386-394.
    • O. Kouropteva, O. Okun, M. Pietikainen, Supervised locally linear embedding algorithm for pattern recognition, Lecture Notes in Computer Science, vol. 2652, 2003, pp. 386-394.
  • 21
    • 10044221878 scopus 로고    scopus 로고
    • D. Ridder, M. Loog, M. Reinders, Local fisher embedding, in: Proceedings of the 17th International Conference on Pattern Recognition, 2004.
    • D. Ridder, M. Loog, M. Reinders, Local fisher embedding, in: Proceedings of the 17th International Conference on Pattern Recognition, 2004.
  • 22
    • 0001683280 scopus 로고    scopus 로고
    • Supervised dimension reduction of intrinsically low dimensional data
    • Vlassis N., Motomura Y., and Krose B. Supervised dimension reduction of intrinsically low dimensional data. Neural Comput. 14 1 (2002) 191-215
    • (2002) Neural Comput. , vol.14 , Issue.1 , pp. 191-215
    • Vlassis, N.1    Motomura, Y.2    Krose, B.3
  • 23
    • 28444473249 scopus 로고    scopus 로고
    • Supervised nonlinear dimensionality reduction for visualization and classification
    • Geng X., Zhang D.C., and Zhou Z.H. Supervised nonlinear dimensionality reduction for visualization and classification. IEEE Trans. Syst. Man Cybern. B 35 6 (2005) 1098-1107
    • (2005) IEEE Trans. Syst. Man Cybern. B , vol.35 , Issue.6 , pp. 1098-1107
    • Geng, X.1    Zhang, D.C.2    Zhou, Z.H.3
  • 24
    • 33747744133 scopus 로고    scopus 로고
    • Local structure based supervised feature extraction
    • Zhao H.T., Sun S.Y., Jing Z.L., and Yang J.Y. Local structure based supervised feature extraction. Pattern Recognition 39 (2006) 1546-1550
    • (2006) Pattern Recognition , vol.39 , pp. 1546-1550
    • Zhao, H.T.1    Sun, S.Y.2    Jing, Z.L.3    Yang, J.Y.4
  • 25
    • 27744565938 scopus 로고    scopus 로고
    • Solving the small sample size problem in face recognition using generalized discriminant analysis
    • Howlanda P., Wangb J., and Parkc H. Solving the small sample size problem in face recognition using generalized discriminant analysis. Pattern Recognition 39 (2006) 277-287
    • (2006) Pattern Recognition , vol.39 , pp. 277-287
    • Howlanda, P.1    Wangb, J.2    Parkc, H.3
  • 26
    • 1842812871 scopus 로고    scopus 로고
    • An efficient algorithm to solve the small sample size problem for LDA
    • Zheng W., Zhao L., and Zou C. An efficient algorithm to solve the small sample size problem for LDA. Pattern Recognition 37 (2004) 1077-1079
    • (2004) Pattern Recognition , vol.37 , pp. 1077-1079
    • Zheng, W.1    Zhao, L.2    Zou, C.3
  • 27
    • 3242767684 scopus 로고    scopus 로고
    • An optimization criterion for generalized discriminant analysis on undersampled problems
    • Ye J., Janardan R., Park C.H., and Park H. An optimization criterion for generalized discriminant analysis on undersampled problems. IEEE Trans. Pattern Anal. Mach. Intell. 26 8 (2004) 982-994
    • (2004) IEEE Trans. Pattern Anal. Mach. Intell. , vol.26 , Issue.8 , pp. 982-994
    • Ye, J.1    Janardan, R.2    Park, C.H.3    Park, H.4
  • 28
    • 21244494853 scopus 로고    scopus 로고
    • A two-stage linear discriminant analysis via QR-decomposition
    • Ye J., and Li Q. A two-stage linear discriminant analysis via QR-decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 27 6 (2005) 929-941
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.6 , pp. 929-941
    • Ye, J.1    Li, Q.2
  • 29
    • 0034300875 scopus 로고    scopus 로고
    • A new LDA-based face recognition system which can solve the small sample size problem
    • Chen L.F., Xu H.Y., Liao M., Ko M.T., Lin J.C., and Yu G.J. A new LDA-based face recognition system which can solve the small sample size problem. Pattern Recognition 33 (2000) 1713-1726
    • (2000) Pattern Recognition , vol.33 , pp. 1713-1726
    • Chen, L.F.1    Xu, H.Y.2    Liao, M.3    Ko, M.T.4    Lin, J.C.5    Yu, G.J.6
  • 30
    • 34548022642 scopus 로고    scopus 로고
    • Maximum variance projection for face recognition
    • Zhang T., Yang J., Wang H., and Du C. Maximum variance projection for face recognition. Opt. Eng. 46 6 (2007) 1-8
    • (2007) Opt. Eng. , vol.46 , Issue.6 , pp. 1-8
    • Zhang, T.1    Yang, J.2    Wang, H.3    Du, C.4
  • 31
    • 33644973537 scopus 로고    scopus 로고
    • Robust locally linear embedding
    • Chang H., and Yeung D.Y. Robust locally linear embedding. Pattern Recognition 39 (2006) 1053-1065
    • (2006) Pattern Recognition , vol.39 , pp. 1053-1065
    • Chang, H.1    Yeung, D.Y.2
  • 32
    • 48149083025 scopus 로고    scopus 로고
    • X. He, P. Niyogi, Locality preserving projections, in: Advances in Neural Information Processing Systems 16 (NIPS 2003), Vancouver, Canada, 2003.
    • X. He, P. Niyogi, Locality preserving projections, in: Advances in Neural Information Processing Systems 16 (NIPS 2003), Vancouver, Canada, 2003.
  • 34
    • 48149087655 scopus 로고    scopus 로고
    • K.Q. Weinberger, L.K. Saul, An introduction to nonlinear dimensionality reduction by maximum variance unfolding, American Association for Artificial Intelligence 〈www.aaai.org〉, 2006.
    • K.Q. Weinberger, L.K. Saul, An introduction to nonlinear dimensionality reduction by maximum variance unfolding, American Association for Artificial Intelligence 〈www.aaai.org〉, 2006.
  • 35
    • 0030106462 scopus 로고    scopus 로고
    • Semidefinite programming
    • Vandenberghe L., and Boy S.P. Semidefinite programming. SIAM Rev. 38 1 (1996) 49-95
    • (1996) SIAM Rev. , vol.38 , Issue.1 , pp. 49-95
    • Vandenberghe, L.1    Boy, S.P.2
  • 36
    • 0034290919 scopus 로고    scopus 로고
    • The FERET evaluation methodology for face-recognition algorithms
    • Yale University Face Database 〈http://cvc.yale.edu/projects/yalefaces/yalefaces.html〉, 2002
    • Phillips P.J., Moon H., Rizvi S.A., and Rauss P.J. The FERET evaluation methodology for face-recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22 10 (2000) 1090-1104. http://cvc.yale.edu/projects/yalefaces/yalefaces.html Yale University Face Database 〈http://cvc.yale.edu/projects/yalefaces/yalefaces.html〉, 2002
    • (2000) IEEE Trans. Pattern Anal. Mach. Intell. , vol.22 , Issue.10 , pp. 1090-1104
    • Phillips, P.J.1    Moon, H.2    Rizvi, S.A.3    Rauss, P.J.4
  • 37
    • 48149088520 scopus 로고    scopus 로고
    • P.J. Phillips, The Facial Recognition Technology (FERET) Database 〈http://www.itl.nist.gov/iad/humanid/feret/feret_master.html〉, 2006.
    • P.J. Phillips, The Facial Recognition Technology (FERET) Database 〈http://www.itl.nist.gov/iad/humanid/feret/feret_master.html〉, 2006.
  • 39
  • 40
    • 48149097111 scopus 로고    scopus 로고
    • T. Sim, S. Baker, M. Bsat, The CMU pose, illumination, and expression (PIE) database of human faces, Technical Report CMU-RI-TR-01-02, Robotics Institute, Carnegie Mellon University, January 2001.
    • T. Sim, S. Baker, M. Bsat, The CMU pose, illumination, and expression (PIE) database of human faces, Technical Report CMU-RI-TR-01-02, Robotics Institute, Carnegie Mellon University, January 2001.
  • 41
    • 48149092523 scopus 로고    scopus 로고
    • See 〈http://www.cs.toronto.edu/~roweis/data.html〉.
    • See 〈http://www.cs.toronto.edu/~roweis/data.html〉.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.