-
1
-
-
0019574572
-
Solutions of the Colebrook-White function for resistance to uniform turbulent flow
-
Barr, D. I. H. (1981). “Solutions of the Colebrook-White function for resistance to uniform turbulent flow.” Proc. Inst. of Civ. Eng. (UK), 2(71), 529.
-
(1981)
Proc. Inst. of Civ. Eng. (UK)
, vol.2
, Issue.71
, pp. 529
-
-
Barr, D.I.H.1
-
2
-
-
0018299284
-
An explicit equation for friction factor in pipe
-
Chen, N. H. (1979). “An explicit equation for friction factor in pipe.” Ind. Eng. Chem. Fundam., 18(3), 296.
-
(1979)
Ind. Eng. Chem. Fundam.
, vol.18
, Issue.3
, pp. 296
-
-
Chen, N.H.1
-
3
-
-
84985635448
-
Empirical expressions for the shear stressing turbulent flow in commercial pipe
-
Churchill, S. W. (1973). “Empirical expressions for the shear stressing turbulent flow in commercial pipe.” AIChE J., 19(2), 375-376.
-
(1973)
AIChE J
, vol.19
, Issue.2
, pp. 375-376
-
-
Churchill, S.W.1
-
4
-
-
0017769439
-
Friction factor equation spans all fluid-flow regimes
-
Churchill, S. W. (1977). “Friction factor equation spans all fluid-flow regimes.” Chem. Eng. J., 84(24), 91-92.
-
(1977)
Chem. Eng. J.
, vol.84
, Issue.24
, pp. 91-92
-
-
Churchill, S.W.1
-
5
-
-
0013300130
-
-
10th Ed., McGraw-Hill
-
Finnemore, E. J., and Franzini, J. B. (2002). Fluid mechanics with engineering applications, 10th Ed., McGraw-Hill, 268-282.
-
(2002)
Fluid mechanics with engineering applications
, pp. 268-282
-
-
Finnemore, E.J.1
Franzini, J.B.2
-
6
-
-
0020717034
-
Simple and explicit formulas for the friction factor in turbulent pipe flow
-
Haaland, S. E. (1983). “Simple and explicit formulas for the friction factor in turbulent pipe flow.” J. Fluids Eng., 105, 89-90.
-
(1983)
J. Fluids Eng.
, vol.105
, pp. 89-90
-
-
Haaland, S.E.1
-
7
-
-
17444433430
-
Accurate explicit equations for friction factor
-
Jain, A. K. (1976). “Accurate explicit equations for friction factor.” J. Hydr. Div., 102(4), 674-677.
-
(1976)
J. Hydr. Div.
, vol.102
, Issue.4
, pp. 674-677
-
-
Jain, A.K.1
-
8
-
-
0031921797
-
Colebrook-White formula for pipe flows
-
Keady, G. (1998). “Colebrook-White formula for pipe flows.” J. Hydraul. Eng., 124(1), 96-97.
-
(1998)
J. Hydraul. Eng.
, vol.124
, Issue.1
, pp. 96-97
-
-
Keady, G.1
-
9
-
-
0006960251
-
-
CRC Press LLC, Boca Raton, Fla
-
Larock, B. E., Jeppson, R. W., and Watters, G. Z. (2000). Hydraulics of pipeline systems, CRC Press LLC, Boca Raton, Fla.
-
(2000)
Hydraulics of pipeline systems
-
-
Larock, B.E.1
Jeppson, R.W.2
Watters, G.Z.3
-
10
-
-
0000689587
-
Replace implicit equations with signomial functions
-
Manadilli, G. (1997). “Replace implicit equations with signomial functions.” Chem. Eng. J., 104(7), 129.
-
(1997)
Chem. Eng. J.
, vol.104
, Issue.7
, pp. 129
-
-
Manadilli, G.1
-
11
-
-
0001652925
-
An approximate formula for pipe friction factors
-
Moody, L. F. (1947). “An approximate formula for pipe friction factors.” Trans. ASME, 69, 1005-1006.
-
(1947)
Trans. ASME
, vol.69
, pp. 1005-1006
-
-
Moody, L.F.1
-
12
-
-
0037188065
-
Improved explicit equations for estimation of the friction factor in rough and smooth pipes
-
Romeo, E., Royo, C., and Monzon, A. (2002). “Improved explicit equations for estimation of the friction factor in rough and smooth pipes.” Chem. Eng. J., 86(3), 369-374.
-
(2002)
Chem. Eng. J.
, vol.86
, Issue.3
, pp. 369-374
-
-
Romeo, E.1
Royo, C.2
Monzon, A.3
-
13
-
-
0018911946
-
An explicit approximation for the friction-factor Reynolds number relation for rough and smooth pipes
-
Round, G. F. (1980). “An explicit approximation for the friction-factor Reynolds number relation for rough and smooth pipes.” Can. J. Chem. Eng., 58(1), 122.
-
(1980)
Can. J. Chem. Eng.
, vol.58
, Issue.1
, pp. 122
-
-
Round, G.F.1
-
14
-
-
4444222302
-
Constraints for using Lambert W function-based explicit Colebrook-White equation
-
Sonnad, J. R., and Goudar, C. T. (2004). “Constraints for using Lambert W function-based explicit Colebrook-White equation.” J. Hydraul. Eng., 130(9), 929-931.
-
(2004)
J. Hydraul. Eng.
, vol.130
, Issue.9
, pp. 929-931
-
-
Sonnad, J.R.1
Goudar, C.T.2
-
15
-
-
33746133879
-
Turbulent flow friction factor calculation using a mathematically exact alternative to the Colebrook-White equation
-
Sonnad, J. R., and Goudar, C. T. (2006). “Turbulent flow friction factor calculation using a mathematically exact alternative to the Colebrook-White equation.” J. Hydraul. Eng., 132(8), 863-867.
-
(2006)
J. Hydraul. Eng.
, vol.132
, Issue.8
, pp. 863-867
-
-
Sonnad, J.R.1
Goudar, C.T.2
-
16
-
-
0016889962
-
Explicit equations for pipe-flow problems
-
Swamee, P. K., and Jain, A. K. (1976). “Explicit equations for pipe-flow problems.” J. Hydr. Div., 102(5), 657-664.
-
(1976)
J. Hydr. Div.
, vol.102
, Issue.5
, pp. 657-664
-
-
Swamee, P.K.1
Jain, A.K.2
-
17
-
-
0003195999
-
An explicit friction factor relationship
-
Wood, D. J. (1966). “An explicit friction factor relationship.” Civil Engineers, ASCE, 60.
-
(1966)
Civil Engineers, ASCE
, pp. 60
-
-
Wood, D.J.1
-
18
-
-
84984119051
-
Explicit approximations to the solution of Colebrook's friction factor equation
-
Zigrang, D. J., and Sylvester, N. D. (1982). “Explicit approximations to the solution of Colebrook's friction factor equation.” AIChE J., 28, 514-515.
-
(1982)
AIChE J
, vol.28
, pp. 514-515
-
-
Zigrang, D.J.1
Sylvester, N.D.2
|