-
1
-
-
0000293752
-
Numerical procedure for the determination of an unknown coefficient in semilinear parabolic partial differential equations
-
Cannon J.R., Lin Y., and Xu S. Numerical procedure for the determination of an unknown coefficient in semilinear parabolic partial differential equations. Inverse Problems 10 (1994) 227-243
-
(1994)
Inverse Problems
, vol.10
, pp. 227-243
-
-
Cannon, J.R.1
Lin, Y.2
Xu, S.3
-
2
-
-
84985357023
-
Numerical solutions of some parabolic inverse problems
-
Cannon J.R., and Lin Y. Numerical solutions of some parabolic inverse problems. Numer. Method Part. Diff. Eq. 2 (1990) 177-191
-
(1990)
Numer. Method Part. Diff. Eq.
, vol.2
, pp. 177-191
-
-
Cannon, J.R.1
Lin, Y.2
-
3
-
-
0000009156
-
An inverse problem of finding a parameter in a semilinear heat equation
-
Cannon J.R., and Lin Y. An inverse problem of finding a parameter in a semilinear heat equation. J. Math. Anal. Appl. 145 (1990) 470-484
-
(1990)
J. Math. Anal. Appl.
, vol.145
, pp. 470-484
-
-
Cannon, J.R.1
Lin, Y.2
-
4
-
-
51249161311
-
Determination of source parameter in parabolic equations
-
Cannon J.R., Lin Y., and Wang S. Determination of source parameter in parabolic equations. Meccanica 27 (1992) 85-94
-
(1992)
Meccanica
, vol.27
, pp. 85-94
-
-
Cannon, J.R.1
Lin, Y.2
Wang, S.3
-
6
-
-
0036467361
-
Fourth-order techniques for identifying a control parameter in the parabolic equations
-
Dehghan M. Fourth-order techniques for identifying a control parameter in the parabolic equations. Int. J. Eng. Sci. 40 (2002) 433-447
-
(2002)
Int. J. Eng. Sci.
, vol.40
, pp. 433-447
-
-
Dehghan, M.1
-
7
-
-
0037429597
-
Finding a control parameter in one-dimensional parabolic equation
-
Dehghan M. Finding a control parameter in one-dimensional parabolic equation. Appl. Math. Comput. 135 (2003) 491-503
-
(2003)
Appl. Math. Comput.
, vol.135
, pp. 491-503
-
-
Dehghan, M.1
-
8
-
-
33747082389
-
Determination of a control parameter in a one-dimensional parabolic equation using the method of radial basis functions
-
Dehghan M. Determination of a control parameter in a one-dimensional parabolic equation using the method of radial basis functions. Math. Comput. Model. 44 (2006) 1160-1168
-
(2006)
Math. Comput. Model.
, vol.44
, pp. 1160-1168
-
-
Dehghan, M.1
-
9
-
-
0346106215
-
Numerical procedures for determining unknown source parameter in parabolic equations
-
Fatullayev A., and Can E. Numerical procedures for determining unknown source parameter in parabolic equations. Math. Comput. Simul. 54 (2000) 159-167
-
(2000)
Math. Comput. Simul.
, vol.54
, pp. 159-167
-
-
Fatullayev, A.1
Can, E.2
-
10
-
-
0000293752
-
Numerical procedures for determination of unknown coefficient in semi-linear parabolic differential equation
-
Cannon J.R., Lin Y., and Xu S. Numerical procedures for determination of unknown coefficient in semi-linear parabolic differential equation. Inverse Problems 10 (1994) 227-243
-
(1994)
Inverse Problems
, vol.10
, pp. 227-243
-
-
Cannon, J.R.1
Lin, Y.2
Xu, S.3
-
11
-
-
19744375661
-
Parameter determination in a partial differential equation from the overspecified data
-
Dehghan M. Parameter determination in a partial differential equation from the overspecified data. Math. Comput. Model. 41 (2005) 196-213
-
(2005)
Math. Comput. Model.
, vol.41
, pp. 196-213
-
-
Dehghan, M.1
-
12
-
-
7544238414
-
Determination of an unknown source parameter in two-dimensional heat equation
-
Barran E.C., and Fatullayev A.G. Determination of an unknown source parameter in two-dimensional heat equation. Appl. Math. Comput. 159 (2004) 881-886
-
(2004)
Appl. Math. Comput.
, vol.159
, pp. 881-886
-
-
Barran, E.C.1
Fatullayev, A.G.2
-
13
-
-
0030379279
-
Meshless method: an overview and recent developments
-
Belytschko T., Krongauz Y., Organ D., Fleming M., and Krysl P. Meshless method: an overview and recent developments. Comput. Method. Appl. Mech. Eng. 139 (1996) 3-47
-
(1996)
Comput. Method. Appl. Mech. Eng.
, vol.139
, pp. 3-47
-
-
Belytschko, T.1
Krongauz, Y.2
Organ, D.3
Fleming, M.4
Krysl, P.5
-
14
-
-
1842523085
-
Reproducing kernel element method. Part I: Theoretical formulation
-
Liu W.K., and Han W.M. Reproducing kernel element method. Part I: Theoretical formulation. Comput. Method Appl. Mech. Eng. 193 (2004) 933-951
-
(2004)
Comput. Method Appl. Mech. Eng.
, vol.193
, pp. 933-951
-
-
Liu, W.K.1
Han, W.M.2
|