-
1
-
-
0142057525
-
-
JAPIAU 0021-8979 10.1063/1.1602956
-
K.B. Crozier, A. Sundaramurthy, G.S. Kino, and C.F. Quate, J. Appl. Phys. 94, 4632 (2003). JAPIAU 0021-8979 10.1063/1.1602956
-
(2003)
J. Appl. Phys.
, vol.94
, pp. 4632
-
-
Crozier, K.B.1
Sundaramurthy, A.2
Kino, G.S.3
Quate, C.F.4
-
2
-
-
18144427545
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.94.017402
-
P.J. Schuck, D.P. Fromm, A. Sundaramurthy, G.S. Kino, and W.E. Moerner, Phys. Rev. Lett. 94, 017402 (2005). PRLTAO 0031-9007 10.1103/PhysRevLett.94. 017402
-
(2005)
Phys. Rev. Lett.
, vol.94
, pp. 017402
-
-
Schuck, P.J.1
Fromm, D.P.2
Sundaramurthy, A.3
Kino, G.S.4
Moerner, W.E.5
-
3
-
-
20444404970
-
-
SCIEAS 0036-8075 10.1126/science.1111886
-
P. Muhlschlegel, H.J. Eisler, O.J.F. Martin, B. Hecht, and D.W. Pohl, Science 308, 1607 (2005). SCIEAS 0036-8075 10.1126/science.1111886
-
(2005)
Science
, vol.308
, pp. 1607
-
-
Muhlschlegel, P.1
Eisler, H.J.2
Martin, O.J.F.3
Hecht, B.4
Pohl, D.W.5
-
4
-
-
28344445264
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.71.235420
-
J. Aizpurua, G.W. Bryant, L.J. Richter, F.J. García de Abajo, B.K. Kelley, and T. Mallouk, Phys. Rev. B PRBMDO 0163-1829 71, 235420 (2005). 10.1103/PhysRevB.71.235420
-
(2005)
Phys. Rev. B
, vol.71
, pp. 235420
-
-
Aizpurua, J.1
Bryant, G.W.2
Richter, L.J.3
Abajo De García, F.J.4
Kelley, B.K.5
Mallouk, T.6
-
5
-
-
33748274691
-
-
APPLAB 0003-6951 10.1063/1.2339286
-
E. Cubukcu, E.A. Kort, K.B. Crozier, and F. Capasso, Appl. Phys. Lett. 89, 093120 (2006). APPLAB 0003-6951 10.1063/1.2339286
-
(2006)
Appl. Phys. Lett.
, vol.89
, pp. 093120
-
-
Cubukcu, E.1
Kort, E.A.2
Crozier, K.B.3
Capasso, F.4
-
6
-
-
33644774926
-
-
JPCBFK 1520-6106 10.1021/jp056606x
-
E.K. Payne, K.L. Shuford, S. Park, G.C. Schatz, and C.A. Mirkin, J. Phys. Chem. B 110, 2150 (2006). JPCBFK 1520-6106 10.1021/jp056606x
-
(2006)
J. Phys. Chem. B
, vol.110
, pp. 2150
-
-
Payne, E.K.1
Shuford, K.L.2
Park, S.3
Schatz, G.C.4
Mirkin, C.A.5
-
7
-
-
34547341931
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.98.266802
-
L. Novotny, Phys. Rev. Lett. 98, 266802 (2007). PRLTAO 0031-9007 10.1103/PhysRevLett.98.266802
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 266802
-
-
Novotny, L.1
-
8
-
-
0000743781
-
-
OPLEDP 0146-9592 10.1364/OL.22.000475
-
J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, Opt. Lett. OPLEDP 0146-9592 22, 475 (1997). 10.1364/OL.22.000475
-
(1997)
Opt. Lett.
, vol.22
, pp. 475
-
-
Takahara, J.1
Yamagishi, S.2
Taki, H.3
Morimoto, A.4
Kobayashi, T.5
-
9
-
-
43149123775
-
-
1749-4885 10.1038/nphoton.2008.53
-
A. Alù and N. Engheta, Nat. Photon. 2, 307 (2008). 1749-4885 10.1038/nphoton.2008.53
-
(2008)
Nat. Photon.
, vol.2
, pp. 307
-
-
Alù, A.1
Engheta, N.2
-
10
-
-
34547217759
-
-
PLRBAQ 0556-2805 10.1103/PhysRevB.6.4370
-
P.B. Johnson and R.W. Christy, Phys. Rev. B PLRBAQ 0556-2805 6, 4370 (1972). 10.1103/PhysRevB.6.4370
-
(1972)
Phys. Rev. B
, vol.6
, pp. 4370
-
-
Johnson, P.B.1
Christy, R.W.2
-
11
-
-
47949129732
-
-
We have used CST Studio Suite2006B
-
We have used CST Studio Suite2006B, http://www.cst.com. The features of this geometry have been analyzed with a 0.2nm detail with suitable subgridded discretization and proper full convergence has been ensured to a -80dB level.
-
-
-
-
13
-
-
33645730888
-
-
JOBPDE 0740-3224 10.1364/JOSAB.23.000571
-
A. Alù and N. Engheta, J. Opt. Soc. Am. B 23, 571 (2006). JOBPDE 0740-3224 10.1364/JOSAB.23.000571
-
(2006)
J. Opt. Soc. Am. B
, vol.23
, pp. 571
-
-
Alù, A.1
Engheta, N.2
-
14
-
-
47949097491
-
-
EPAPS Document No E-PRLTAO-101-059830. (a)Figure1 in the Supplementary Material. Radiation efficiency, related to Fig.2. In order to increase the numerical precision, each one of these curves has been obtained with frequency-domain simulations (310frequency samples all over the frequency range of the figure).
-
See EPAPS Document No. E-PRLTAO-101-059830. (a)Figure1 in the Supplementary Material. Radiation efficiency, related to Fig.2. In order to increase the numerical precision, each one of these curves has been obtained with frequency-domain simulations (310frequency samples all over the frequency range of the figure).
-
-
-
-
15
-
-
47949092563
-
-
Figure2 in the Supplementary Material. Radiation resistance for the nanodipoles of Fig.2. The thinner solid line indicates the theoretical radiation resistance evaluated for a nanodipole with Leff=λeff/2 (at RF this line would be constant at 73Ω). For more information on EPAPS
-
Figure2 in the Supplementary Material. Radiation resistance for the nanodipoles of Fig.2. The thinner solid line indicates the theoretical radiation resistance evaluated for a nanodipole with Leff=λeff/2 (at RF this line would be constant at 73Ω). For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html.
-
-
-
-
16
-
-
27144550765
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.95.095504
-
N. Engheta, A. Salandrino, and A. Alù, Phys. Rev. Lett. 95, 095504 (2005). PRLTAO 0031-9007 10.1103/PhysRevLett.95.095504
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 095504
-
-
Engheta, N.1
Salandrino, A.2
Alù, A.3
-
17
-
-
34648830651
-
-
SCIEAS 0036-8075 10.1126/science.1133268
-
N. Engheta, Science SCIEAS 0036-8075 317, 1698 (2007). 10.1126/science.1133268
-
(2007)
Science
, vol.317
, pp. 1698
-
-
Engheta, N.1
|