메뉴 건너뛰기




Volumn , Issue , 2007, Pages 651-658

An empirical study of the classification performance of learners on imbalanced and noisy software quality data

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); DATA MINING; DECISION SUPPORT SYSTEMS; INDUSTRIAL MANAGEMENT; INFORMATION MANAGEMENT; INFORMATION USE; KNOWLEDGE MANAGEMENT; LEARNING SYSTEMS; SAMPLING; SEARCH ENGINES;

EID: 47949084331     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IRI.2007.4296694     Document Type: Conference Paper
Times cited : (25)

References (21)
  • 1
    • 34547973397 scopus 로고    scopus 로고
    • The imbalanced training sample problem: Under or over sampling? In Joint IAPR International Workshops on Structural, Syntactic, and Statistical Pattern Recognition (SSPR/SPR'04)
    • R. Barandela, R. M. Valdovinos, J. S. Sanchez, and F. J. Ferri. The imbalanced training sample problem: Under or over sampling? In Joint IAPR International Workshops on Structural, Syntactic, and Statistical Pattern Recognition (SSPR/SPR'04), Lecture Notes in Computer Science 3138, (806-814), 2004.
    • (2004) Lecture Notes in Computer Science , vol.3138 , Issue.806-814
    • Barandela, R.1    Valdovinos, R.M.2    Sanchez, J.S.3    Ferri, F.J.4
  • 2
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 5
    • 85126494613 scopus 로고    scopus 로고
    • H. Han, W. Y. Wang, and B. H. Mao. Borderlinesmote: A new over-sampling method in imbalanced data sets learning. In In International Conference on Intelligent Computing (ICIC'05). Lecture Notes in Computer Science 3644, pages 878-887. Springer-Verlag, 2005.
    • H. Han, W. Y. Wang, and B. H. Mao. Borderlinesmote: A new over-sampling method in imbalanced data sets learning. In In International Conference on Intelligent Computing (ICIC'05). Lecture Notes in Computer Science 3644, pages 878-887. Springer-Verlag, 2005.
  • 6
    • 27144540575 scopus 로고    scopus 로고
    • Class imbalances versus small disjuncts
    • T. Jo and N. Japkowicz. Class imbalances versus small disjuncts. SIGKDD Explorations, 6(1):40-49, 2004.
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 40-49
    • Jo, T.1    Japkowicz, N.2
  • 7
    • 0032156744 scopus 로고    scopus 로고
    • Classification of fault-prone software modules: Prior probabilities, costs and model evaluation
    • T. M. Khoshgoftaar and E. B. Allen. Classification of fault-prone software modules: Prior probabilities, costs and model evaluation. Empirical Software Engineering, 3:275-298, 1998.
    • (1998) Empirical Software Engineering , vol.3 , pp. 275-298
    • Khoshgoftaar, T.M.1    Allen, E.B.2
  • 9
    • 3543063465 scopus 로고    scopus 로고
    • Comparative assessment of software quality classification techniques: An empirical case study
    • T. M. Khoshgoftaar and N. Seliya. Comparative assessment of software quality classification techniques: An empirical case study. Empirical Software Engineering Journal, 9(2):229-257, 2004.
    • (2004) Empirical Software Engineering Journal , vol.9 , Issue.2 , pp. 229-257
    • Khoshgoftaar, T.M.1    Seliya, N.2
  • 10
    • 14844337488 scopus 로고    scopus 로고
    • The necessity of assuring quality in software measurement data
    • Chicago, IL, September, IEEE Computer Society
    • T. M. Khoshgoftaar and N. Seliya. The necessity of assuring quality in software measurement data. In Proceedings of 10th International Software Metrics Symposium, pages 119-130, Chicago, IL, September 2004. IEEE Computer Society.
    • (2004) Proceedings of 10th International Software Metrics Symposium , pp. 119-130
    • Khoshgoftaar, T.M.1    Seliya, N.2
  • 15
    • 0035283313 scopus 로고    scopus 로고
    • Robust classification for imprecise environments
    • F. Provost and T. Fawcett. Robust classification for imprecise environments. Machine Learning, 42:203-231, 2001.
    • (2001) Machine Learning , vol.42 , pp. 203-231
    • Provost, F.1    Fawcett, T.2
  • 17
    • 20844458491 scopus 로고    scopus 로고
    • Mining with rarity: A unifying framework
    • G. M. Weiss. Mining with rarity: A unifying framework. SIGKDD Explorations, 6(1):7-19, 2004.
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 7-19
    • Weiss, G.M.1
  • 18
    • 1442275185 scopus 로고    scopus 로고
    • Learning when training data are costly: The effect of class distribution on tree induction
    • G. M. Weiss and F. Provost. Learning when training data are costly: the effect of class distribution on tree induction. Journal of Artificial Intelligence Research, (19):315-354, 2003.
    • (2003) Journal of Artificial Intelligence Research , vol.19 , pp. 315-354
    • Weiss, G.M.1    Provost, F.2
  • 21
    • 19544372918 scopus 로고    scopus 로고
    • Class noise vs attribute noise: A quantitative study of their impacts
    • November
    • X. Zhu and X. Wu. Class noise vs attribute noise: A quantitative study of their impacts. Artificial Intelligence Review, 22(3-4): 177-210, November 2004.
    • (2004) Artificial Intelligence Review , vol.22 , Issue.3-4 , pp. 177-210
    • Zhu, X.1    Wu, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.