-
1
-
-
34547973397
-
The imbalanced training sample problem: Under or over sampling? In Joint IAPR International Workshops on Structural, Syntactic, and Statistical Pattern Recognition (SSPR/SPR'04)
-
R. Barandela, R. M. Valdovinos, J. S. Sanchez, and F. J. Ferri. The imbalanced training sample problem: Under or over sampling? In Joint IAPR International Workshops on Structural, Syntactic, and Statistical Pattern Recognition (SSPR/SPR'04), Lecture Notes in Computer Science 3138, (806-814), 2004.
-
(2004)
Lecture Notes in Computer Science
, vol.3138
, Issue.806-814
-
-
Barandela, R.1
Valdovinos, R.M.2
Sanchez, J.S.3
Ferri, F.J.4
-
2
-
-
0035478854
-
Random forests
-
L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
3
-
-
0346586663
-
Smote: Synthetic minority oversampling technique
-
N. V. Chawla, L. O. Hall, K. W. Bowyer, and W. P. Kegelmeyer. Smote: Synthetic minority oversampling technique. Journal of Artificial Intelligence Research, (16):321-357, 2002.
-
(2002)
Journal of Artificial Intelligence Research
, vol.16
, pp. 321-357
-
-
Chawla, N.V.1
Hall, L.O.2
Bowyer, K.W.3
Kegelmeyer, W.P.4
-
5
-
-
85126494613
-
-
H. Han, W. Y. Wang, and B. H. Mao. Borderlinesmote: A new over-sampling method in imbalanced data sets learning. In In International Conference on Intelligent Computing (ICIC'05). Lecture Notes in Computer Science 3644, pages 878-887. Springer-Verlag, 2005.
-
H. Han, W. Y. Wang, and B. H. Mao. Borderlinesmote: A new over-sampling method in imbalanced data sets learning. In In International Conference on Intelligent Computing (ICIC'05). Lecture Notes in Computer Science 3644, pages 878-887. Springer-Verlag, 2005.
-
-
-
-
6
-
-
27144540575
-
Class imbalances versus small disjuncts
-
T. Jo and N. Japkowicz. Class imbalances versus small disjuncts. SIGKDD Explorations, 6(1):40-49, 2004.
-
(2004)
SIGKDD Explorations
, vol.6
, Issue.1
, pp. 40-49
-
-
Jo, T.1
Japkowicz, N.2
-
7
-
-
0032156744
-
Classification of fault-prone software modules: Prior probabilities, costs and model evaluation
-
T. M. Khoshgoftaar and E. B. Allen. Classification of fault-prone software modules: Prior probabilities, costs and model evaluation. Empirical Software Engineering, 3:275-298, 1998.
-
(1998)
Empirical Software Engineering
, vol.3
, pp. 275-298
-
-
Khoshgoftaar, T.M.1
Allen, E.B.2
-
8
-
-
0001680460
-
Logistic regression modeling of software quality
-
December
-
T. M. Khoshgoftaar and E. B. Allen. Logistic regression modeling of software quality. International Journal of Reliability, Quality, and Safety Engineering, 6(4):303-317, December 1999.
-
(1999)
International Journal of Reliability, Quality, and Safety Engineering
, vol.6
, Issue.4
, pp. 303-317
-
-
Khoshgoftaar, T.M.1
Allen, E.B.2
-
9
-
-
3543063465
-
Comparative assessment of software quality classification techniques: An empirical case study
-
T. M. Khoshgoftaar and N. Seliya. Comparative assessment of software quality classification techniques: An empirical case study. Empirical Software Engineering Journal, 9(2):229-257, 2004.
-
(2004)
Empirical Software Engineering Journal
, vol.9
, Issue.2
, pp. 229-257
-
-
Khoshgoftaar, T.M.1
Seliya, N.2
-
10
-
-
14844337488
-
The necessity of assuring quality in software measurement data
-
Chicago, IL, September, IEEE Computer Society
-
T. M. Khoshgoftaar and N. Seliya. The necessity of assuring quality in software measurement data. In Proceedings of 10th International Software Metrics Symposium, pages 119-130, Chicago, IL, September 2004. IEEE Computer Society.
-
(2004)
Proceedings of 10th International Software Metrics Symposium
, pp. 119-130
-
-
Khoshgoftaar, T.M.1
Seliya, N.2
-
12
-
-
38949173518
-
A hybrid approach to cleansing software measurement data
-
Washington, D.C, November 13-15
-
th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2006), pages 713-722, Washington, D.C., November 13-15 2006.
-
(2006)
th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2006)
, pp. 713-722
-
-
Khoshgoftaar, T.M.1
Van Hulse, J.2
Seiffert, C.3
-
15
-
-
0035283313
-
Robust classification for imprecise environments
-
F. Provost and T. Fawcett. Robust classification for imprecise environments. Machine Learning, 42:203-231, 2001.
-
(2001)
Machine Learning
, vol.42
, pp. 203-231
-
-
Provost, F.1
Fawcett, T.2
-
16
-
-
33947404760
-
The pairwise attribute noise detection algorithm
-
J. Van Hulse, T. M. Khoshgoftaar, and H. Huang. The pairwise attribute noise detection algorithm. Knowledge and Information Systems Journal, Special Issue on Mining Low Quality Data, 11(2): 171-190, 2007.
-
(2007)
Knowledge and Information Systems Journal, Special Issue on Mining Low Quality Data
, vol.11
, Issue.2
, pp. 171-190
-
-
Van Hulse, J.1
Khoshgoftaar, T.M.2
Huang, H.3
-
17
-
-
20844458491
-
Mining with rarity: A unifying framework
-
G. M. Weiss. Mining with rarity: A unifying framework. SIGKDD Explorations, 6(1):7-19, 2004.
-
(2004)
SIGKDD Explorations
, vol.6
, Issue.1
, pp. 7-19
-
-
Weiss, G.M.1
-
18
-
-
1442275185
-
Learning when training data are costly: The effect of class distribution on tree induction
-
G. M. Weiss and F. Provost. Learning when training data are costly: the effect of class distribution on tree induction. Journal of Artificial Intelligence Research, (19):315-354, 2003.
-
(2003)
Journal of Artificial Intelligence Research
, vol.19
, pp. 315-354
-
-
Weiss, G.M.1
Provost, F.2
-
20
-
-
0003639957
-
Experimentation in Software Engineering: An Introduction
-
Kluwer Academic Publishers, Boston, MA
-
C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and A. Wesslen. Experimentation in Software Engineering: An Introduction. Kluwer International Series in Software Engineering. Kluwer Academic Publishers, Boston, MA, 2000.
-
(2000)
Kluwer International Series in Software Engineering
-
-
Wohlin, C.1
Runeson, P.2
Host, M.3
Ohlsson, M.C.4
Regnell, B.5
Wesslen, A.6
-
21
-
-
19544372918
-
Class noise vs attribute noise: A quantitative study of their impacts
-
November
-
X. Zhu and X. Wu. Class noise vs attribute noise: A quantitative study of their impacts. Artificial Intelligence Review, 22(3-4): 177-210, November 2004.
-
(2004)
Artificial Intelligence Review
, vol.22
, Issue.3-4
, pp. 177-210
-
-
Zhu, X.1
Wu, X.2
|