메뉴 건너뛰기




Volumn 51, Issue 8, 2008, Pages 751-759

Outlier detection in near-infrared spectroscopic analysis by using Monte Carlo cross-validation

Author keywords

Monte Carlo cross validation; Near infrared spectrum; Outlier detection; Partial least squares(PLS)

Indexed keywords

INFRARED DEVICES; KETONES; MAGNETIC RESONANCE SPECTROSCOPY; MONTE CARLO METHODS; PHILOSOPHICAL ASPECTS; PRESSES (MACHINE TOOLS); PROBABILITY; RANDOM PROCESSES; RISK ASSESSMENT; SPECTRUM ANALYZERS; SPEECH; TESTING;

EID: 47749116004     PISSN: 10069291     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11426-008-0080-x     Document Type: Article
Times cited : (53)

References (49)
  • 3
    • 0034648388 scopus 로고    scopus 로고
    • Multiple outlier detection for multivariate calibration using robust statistical techniques
    • 1
    • Pell R J. Multiple outlier detection for multivariate calibration using robust statistical techniques. Chemom Intell Lab Syst, 2000, 52(1): 87-104
    • (2000) Chemom Intell Lab Syst , vol.52 , pp. 87-104
    • Pell, R.J.1
  • 4
    • 14644414808 scopus 로고    scopus 로고
    • Simultaneous wavelength selection and outlier detection in multivariate regression of near-infrared spectra
    • 2
    • Chen D, Shao X G, Hu B, Su Q D. Simultaneous wavelength selection and outlier detection in multivariate regression of near-infrared spectra. Anal Sci, 2005, 21(2): 161-166
    • (2005) Anal Sci , vol.21 , pp. 161-166
    • Chen, D.1    Shao, X.G.2    Hu, B.3    Su, Q.D.4
  • 5
    • 0026557776 scopus 로고
    • Optimized scaling: A novel approach to linear calibration with closed data sets
    • 1-3
    • Karstang T V, Manne R. Optimized scaling: a novel approach to linear calibration with closed data sets. Chemom Intell Lab Syst, 1992, 14(1-3): 165-173
    • (1992) Chemom Intell Lab Syst , vol.14 , pp. 165-173
    • Karstang, T.V.1    Manne, R.2
  • 6
    • 0022059848 scopus 로고
    • Linearization and scatter correction for near infrared reflectance spectra of meat
    • 3
    • Geladi P, MacDougall D, Martens H. Linearization and scatter correction for near infrared reflectance spectra of meat. Appl Spectrosc, 1985, 39(3): 491-500
    • (1985) Appl Spectrosc , vol.39 , pp. 491-500
    • Geladi, P.1    MacDougall, D.2    Martens, H.3
  • 7
    • 0032517819 scopus 로고    scopus 로고
    • Orthogonal signal correction of near-infrared spectra
    • 1-2
    • Wold S, Antti H, Lindgren F, Ohman J. Orthogonal signal correction of near-infrared spectra. Chemom Intell Lab Syst, 1998, 44(1-2): 175-185
    • (1998) Chemom Intell Lab Syst , vol.44 , pp. 175-185
    • Wold, S.1    Antti, H.2    Lindgren, F.3    Ohman, J.4
  • 8
    • 3142619653 scopus 로고    scopus 로고
    • Removal of major interference sources in aqueous near-infrared spectroscopy techniques
    • 4
    • Chen D, Hu B, Shao X G, Su Q D. Removal of major interference sources in aqueous near-infrared spectroscopy techniques. Anal Bioanal Chem, 2004, 379(4): 714-719
    • (2004) Anal Bioanal Chem , vol.379 , pp. 714-719
    • Chen, D.1    Hu, B.2    Shao, X.G.3    Su, Q.D.4
  • 10
  • 11
    • 3242668710 scopus 로고    scopus 로고
    • Variable selection by modified IPW (iterative predictor weighting)-PLS (partial least squares) in continuous wavelet regression models
    • 7
    • Chen D, Hu B, Shao X G, Su Q D. Variable selection by modified IPW (iterative predictor weighting)-PLS (partial least squares) in continuous wavelet regression models. Analyst, 2004, 129(7): 664-669
    • (2004) Analyst , vol.129 , pp. 664-669
    • Chen, D.1    Hu, B.2    Shao, X.G.3    Su, Q.D.4
  • 12
    • 1842480195 scopus 로고    scopus 로고
    • Determination of chlorogenic acid in plant samples by using near-infrared spectrum with wavelet transform preprocessing
    • 3
    • Shao X G, Zhuang Y Z. Determination of chlorogenic acid in plant samples by using near-infrared spectrum with wavelet transform preprocessing. Anal Sci, 2004, 20(3): 451-454
    • (2004) Anal Sci , vol.20 , pp. 451-454
    • Shao, X.G.1    Zhuang, Y.Z.2
  • 13
    • 2942739420 scopus 로고    scopus 로고
    • Continuous wavelet transform applied to removing the fluctuating background in near-infrared spectra
    • 3
    • Ma C X, Shao X G. Continuous wavelet transform applied to removing the fluctuating background in near-infrared spectra. J Chem Inf Comput Sci, 2004, 44(3): 907-911
    • (2004) J Chem Inf Comput Sci , vol.44 , pp. 907-911
    • Ma, C.X.1    Shao, X.G.2
  • 14
    • 0033905297 scopus 로고    scopus 로고
    • Interval partial least-squares regression (iPLS): A comparative chemometric study with an example from near-infrared spectroscopy
    • 3
    • Norgaard L, Saudaland A, Wagner J, Nielsen J P, Munck L, Engelsen S B. Interval partial least-squares regression (iPLS): a comparative chemometric study with an example from near-infrared spectroscopy. Appl Spectrosc, 2000, 54(3): 413-419
    • (2000) Appl Spectrosc , vol.54 , pp. 413-419
    • Norgaard, L.1    Saudaland, A.2    Wagner, J.3    Nielsen, J.P.4    Munck, L.5    Engelsen, S.B.6
  • 15
    • 18844432760 scopus 로고    scopus 로고
    • Sequential application of backward interval PLS and genetic algorithms for the selection of relevant spectral regions
    • 11
    • Leardi R, Norgaard L. Sequential application of backward interval PLS and genetic algorithms for the selection of relevant spectral regions. J Chemom, 2004, 18(11): 486-497
    • (2004) J Chemom , vol.18 , pp. 486-497
    • Leardi, R.1    Norgaard, L.2
  • 16
    • 84984336225 scopus 로고
    • Interactive variable selection (IVS) for PLS1. Theory and algorithms
    • 5
    • Lindgren F, Geladi P, Rannar S, Wold S. Interactive variable selection (IVS) for PLS1. Theory and algorithms. J Chemom, 1994, 8(5): 349-363
    • (1994) J Chemom , vol.8 , pp. 349-363
    • Lindgren, F.1    Geladi, P.2    Rannar, S.3    Wold, S.4
  • 17
    • 47749136030 scopus 로고
    • Interactive variable selection (IVS) for PLS2. chemical applications
    • 5
    • Lindgren F, Geladi P, Berglund A, Sjostrom M, Wold S. Interactive variable selection (IVS) for PLS2. chemical applications. J Chemom, 1995, 9(5): 349-363
    • (1995) J Chemom , vol.9 , pp. 349-363
    • Lindgren, F.1    Geladi, P.2    Berglund, A.3    Sjostrom, M.4    Wold, S.5
  • 19
    • 14644389629 scopus 로고    scopus 로고
    • A method for near-infrared spectral calibration of complex plant samples with wavelet transform and elimination of uninformative variables
    • 5
    • Shao X G, Wang F, Chen D, Su Q. D. A method for near-infrared spectral calibration of complex plant samples with wavelet transform and elimination of uninformative variables. Anal Bioanal Chem, 2004, 378(5): 1382-1387
    • (2004) Anal Bioanal Chem , vol.378 , pp. 1382-1387
    • Shao, X.G.1    Wang, F.2    Chen, D.3    Su, Q.D.4
  • 21
    • 0036685120 scopus 로고    scopus 로고
    • Applicational aspects of support vector machines
    • 8-10
    • Belousov A I, Verzakov S A, Von Frese J. Applicational aspects of support vector machines. J Chemom, 2002, 16(8-10): 482-489
    • (2002) J Chemom , vol.16 , pp. 482-489
    • Belousov, A.I.1    Verzakov, S.A.2    Von Frese, J.3
  • 22
    • 33947320459 scopus 로고    scopus 로고
    • A consensus least squares support vector regression (LS-SVR) for analysis of near-infrared spectra of plant samples
    • 1
    • Li Y K, Shao X G, Cai W S. A consensus least squares support vector regression (LS-SVR) for analysis of near-infrared spectra of plant samples. Talanta, 2007, 72(1): 217-222
    • (2007) Talanta , vol.72 , pp. 217-222
    • Li, Y.K.1    Shao, X.G.2    Cai, W.S.3
  • 24
    • 0029917548 scopus 로고    scopus 로고
    • Robust methods for multivariate analysis-a tutorial review
    • 1
    • Liang Y Z, Kvalheim O M, Robust methods for multivariate analysis-a tutorial review. Chemom Intell Lab Syst, 1996, 32(1): 1-10
    • (1996) Chemom Intell Lab Syst , vol.32 , pp. 1-10
    • Liang, Y.Z.1    Kvalheim, O.M.2
  • 29
    • 84950884569 scopus 로고
    • Robust estimation of dispersion matrix and principal components
    • 374
    • Devlin J S, Gnanadesikan R, Kettering J R. Robust estimation of dispersion matrix and principal components. J Am Stat Assoc, 1981, 76(374): 354-362
    • (1981) J Am Stat Assoc , vol.76 , pp. 354-362
    • Devlin, J.S.1    Gnanadesikan, R.2    Kettering, J.R.3
  • 31
    • 0042295202 scopus 로고    scopus 로고
    • A Fast procedure for outlier diagnostics in large regression systems
    • 446
    • Pena D, Yohai V. A Fast procedure for outlier diagnostics in large regression systems. J Am Stat Assoc, 1999, 94(446): 434-445
    • (1999) J Am Stat Assoc , vol.94 , pp. 434-445
    • Pena, D.1    Yohai, V.2
  • 32
    • 0043032924 scopus 로고    scopus 로고
    • Robust principal components regression based on principal sensitivity vectors
    • 2
    • Zhang M H, Xu Q S, Massart D L. Robust principal components regression based on principal sensitivity vectors. Chemom Intell Lab Sys, 2003, 67(2): 175-185
    • (2003) Chemom Intell Lab Sys , vol.67 , pp. 175-185
    • Zhang, M.H.1    Xu, Q.S.2    Massart, D.L.3
  • 33
    • 0037185465 scopus 로고    scopus 로고
    • A fast method for robust principal components with application to chemometrics
    • 1-2
    • Hubert M, Rousseeuw P J, Verboven S. A fast method for robust principal components with application to chemometrics. Chemom Intell Lab Sys, 2002, 60(1-2): 101-111
    • (2002) Chemom Intell Lab Sys , vol.60 , pp. 101-111
    • Hubert, M.1    Rousseeuw, P.J.2    Verboven, S.3
  • 34
    • 18744376591 scopus 로고    scopus 로고
    • High breakdown estimators for principal components: The projection-pursuit approach revisited
    • 1
    • Croux C, Ruiz-Gazen A. High breakdown estimators for principal components: The projection-pursuit approach revisited. J Mult Anal, 2005, 95(1): 206-226
    • (2005) J Mult Anal , vol.95 , pp. 206-226
    • Croux, C.1    Ruiz-Gazen, A.2
  • 35
    • 2942733255 scopus 로고    scopus 로고
    • Robustness properties of a robust partial least squares regression method
    • 1
    • Branden K V, Hubert M. Robustness properties of a robust partial least squares regression method. Anal Chim Acta, 2004, 515(1): 229-241
    • (2004) Anal Chim Acta , vol.515 , pp. 229-241
    • Branden, K.V.1    Hubert, M.2
  • 36
    • 84984395166 scopus 로고
    • Iteratively reweighted partial least squares: A performance analysis by Monte Carlo simulation
    • 6
    • Cummins D J, Andrews C W. Iteratively reweighted partial least squares: a performance analysis by Monte Carlo simulation. J Chemom, 1995, 9(6): 489-507
    • (1995) J Chemom , vol.9 , pp. 489-507
    • Cummins, D.J.1    Andrews, C.W.2
  • 37
    • 0342397620 scopus 로고    scopus 로고
    • On robust partial least squares PLS methods
    • 6
    • Gil J A, Romera R. On robust partial least squares PLS methods. J Chemom, 1998, 12(6): 365-378
    • (1998) J Chemom , vol.12 , pp. 365-378
    • Gil, J.A.1    Romera, R.2
  • 39
    • 0028867515 scopus 로고
    • Prediction error in partial least squares regression: A critique on the deviation used in the Unscrambler
    • 2
    • De Vries S, Cajo J F, Braak T. Prediction error in partial least squares regression: A critique on the deviation used in the Unscrambler. Chemom Intell Lab Syst, 1995, 30(2): 239-245
    • (1995) Chemom Intell Lab Syst , vol.30 , pp. 239-245
    • De Vries, S.1    Cajo, J.F.2    Braak, T.3
  • 40
    • 0032517832 scopus 로고    scopus 로고
    • Review of partial least squares regression prediction error in Unscrambler
    • 1-2
    • Hoy M, Steen K, Martens H. Review of partial least squares regression prediction error in Unscrambler. Chemom Intell Lab Syst, 1998, 44(1-2): 123-133
    • (1998) Chemom Intell Lab Syst , vol.44 , pp. 123-133
    • Hoy, M.1    Steen, K.2    Martens, H.3
  • 41
    • 0012472541 scopus 로고
    • The upper bound theorem for polytopes: An easy proof of its asymptotic version
    • 2
    • Seidel R. The upper bound theorem for polytopes: An easy proof of its asymptotic version. Comput Geom Theory Appl, 1995, 5(2): 115-116
    • (1995) Comput Geom Theory Appl , vol.5 , pp. 115-116
    • Seidel, R.1
  • 44
    • 0042280342 scopus 로고    scopus 로고
    • An evaluation of the PoLiSh smoothed regression and the Monte Carlo cross-validation for the determination of the complexity of a PLS model
    • 1
    • Gourvenec S, Fernandez Pierna J A, Massart D L, Rutledge D N. An evaluation of the PoLiSh smoothed regression and the Monte Carlo cross-validation for the determination of the complexity of a PLS model. Chemom Intell Lab Syst, 2003, 68(1): 41-51
    • (2003) Chemom Intell Lab Syst , vol.68 , pp. 41-51
    • Gourvenec, S.1    Fernandez Pierna, J.A.2    Massart, D.L.3    Rutledge, D.N.4
  • 45
    • 84972496372 scopus 로고
    • Influential observations, high leverage points, and outliers in linear regression
    • 3
    • Chatterjee S, Hadi A S. Influential observations, high leverage points, and outliers in linear regression. Stat Sci, 1986, 1(3): 379-416
    • (1986) Stat Sci , vol.1 , pp. 379-416
    • Chatterjee, S.1    Hadi, A.S.2
  • 46
    • 0024034712 scopus 로고
    • Partial least squares methods for spectral analysis 1: Relation to other multivariate calibration methods and the extraction of qualitative information
    • 11
    • Haaland D M, Thomas E V. Partial least squares methods for spectral analysis 1: Relation to other multivariate calibration methods and the extraction of qualitative information. Anal Chem, 1988, 60(11): 1193-1202
    • (1988) Anal Chem , vol.60 , pp. 1193-1202
    • Haaland, D.M.1    Thomas, E.V.2
  • 47
    • 0030816163 scopus 로고    scopus 로고
    • Two data sets of near infrared spectra
    • 2
    • Kalivas J H. Two data sets of near infrared spectra. Chemom Intell Lab Syst, 1997, 37(2): 255-259
    • (1997) Chemom Intell Lab Syst , vol.37 , pp. 255-259
    • Kalivas, J.H.1
  • 48
    • 0035093073 scopus 로고    scopus 로고
    • Elimination of the uninformative calibration sample subset in the modified UVE-PLS method
    • 2
    • Koshoubu J, Iwata T, Minami S. Elimination of the uninformative calibration sample subset in the modified UVE-PLS method. Anal Sci, 2001, 17(2): 319-322
    • (2001) Anal Sci , vol.17 , pp. 319-322
    • Koshoubu, J.1    Iwata, T.2    Minami, S.3
  • 49
    • 0002617598 scopus 로고
    • A completely automatic french curve: Fitting spline functions by cross validation
    • 1
    • Wahba G, Wold S. A completely automatic french curve: Fitting spline functions by cross validation. Commun Stat, 1975, 4(1): 1-17
    • (1975) Commun Stat , vol.4 , pp. 1-17
    • Wahba, G.1    Wold, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.