메뉴 건너뛰기




Volumn 78, Issue 1, 2008, Pages

Normalized RBF networks: Application to a system of integral equations

Author keywords

[No Author keywords available]

Indexed keywords

ATTITUDE CONTROL; BACKPROPAGATION; BACKPROPAGATION ALGORITHMS; COMPUTER ARCHITECTURE; DIFFERENCE EQUATIONS; DIFFERENTIAL EQUATIONS; DIFFERENTIATION (CALCULUS); FEEDFORWARD NEURAL NETWORKS; IMAGE SEGMENTATION; INTEGRAL EQUATIONS; INTEGRODIFFERENTIAL EQUATIONS; LEARNING ALGORITHMS; LEARNING SYSTEMS; LEAST SQUARES APPROXIMATIONS; LINEAR EQUATIONS; NETWORK ARCHITECTURE; NEURAL NETWORKS;

EID: 47749111325     PISSN: 00318949     EISSN: 14024896     Source Type: Journal    
DOI: 10.1088/0031-8949/78/01/015008     Document Type: Article
Times cited : (5)

References (22)
  • 2
    • 0037368037 scopus 로고    scopus 로고
    • Approximation of function and its derivatives using radial basis function networks
    • Mai-Duy N and Tran-Cong T 2003 Approximation of function and its derivatives using radial basis function networks Appl. Math. Model. 27 197-220
    • (2003) Appl. Math. Model. , vol.27 , Issue.3 , pp. 197-220
    • Mai-Duy, N.1    Tran-Cong, T.2
  • 3
    • 0000106040 scopus 로고
    • Universal approximation using radial basis function networks
    • Park J and Sandberg I W 1991 Universal approximation using radial basis function networks Neural Comput. 3 246-57
    • (1991) Neural Comput. , vol.3 , Issue.2 , pp. 246-257
    • Park, J.1    Sandberg, I.W.2
  • 5
    • 0028381973 scopus 로고
    • Speaker identification using multilayer perceptrons and radial basis function networks
    • Mak M W, Allen W G and Sexton G G 1994 Speaker identification using multilayer perceptrons and radial basis function networks Neurocomputing 6 99-117
    • (1994) Neurocomputing , vol.6 , Issue.1 , pp. 99-117
    • Mak, M.W.1    Allen, W.G.2    Sexton, G.G.3
  • 6
    • 0000874557 scopus 로고
    • Theoretical foundations of the potential function method in pattern recognition learning
    • Aizerman M A, Braverman E M and Rozonoer L I 1964 Theoretical foundations of the potential function method in pattern recognition learning Autom. Remote Control 25 821-37
    • (1964) Autom. Remote Control , vol.25 , pp. 821-837
    • Aizerman, M.A.1    Braverman, E.M.2    Rozonoer, L.I.3
  • 7
    • 0001226787 scopus 로고
    • Potential function algorithms for pattern recognition learning machines
    • Bashkirov O A, Braverman E M and Muchnik I B 1964 Potential function algorithms for pattern recognition learning machines Autom. Remote Control 25 629-31
    • (1964) Autom. Remote Control , vol.25 , pp. 629-631
    • Bashkirov, O.A.1    Braverman, E.M.2    Muchnik, I.B.3
  • 8
    • 47749151182 scopus 로고
    • Specht D F 1968 A practical technique for estimating general regression surfaces Report LMSC-6-79-68-6 (Palo Alto, CA Lockheed Missile and Space Co)
    • (1968)
    • Specht, D.F.1
  • 9
    • 0000621802 scopus 로고
    • Multivariate functional interpolation and adaptive networks
    • Broomhead D S and Lowe D 1988 Multivariate functional interpolation and adaptive networks Complex Syst. 2 321-55
    • (1988) Complex Syst. , vol.2 , Issue.3 , pp. 321-355
    • Broomhead, D.S.1    Lowe, D.2
  • 10
    • 0000672424 scopus 로고
    • Fast learning in networks of locally-tuned processing units
    • Moody J E and Darken C J 1989 Fast learning in networks of locally-tuned processing units Neural Comput. 1 281-94
    • (1989) Neural Comput. , vol.1 , Issue.2 , pp. 281-294
    • Moody, J.E.1    Darken, C.J.2
  • 11
    • 0038383455 scopus 로고    scopus 로고
    • Numerical solution of elliptic partial differential equation using radial basis function neural networks
    • Jianyu L, Siwei L, Yingjian Q and Yaping H 2003 Numerical solution of elliptic partial differential equation using radial basis function neural networks Neural Networks 16 729-34
    • (2003) Neural Networks , vol.16 , Issue.5-6 , pp. 729-734
    • Jianyu, L.1    Siwei, L.2    Yingjian, Q.3    Yaping, H.4
  • 12
    • 16644385826 scopus 로고    scopus 로고
    • Adaptive radial basis function method for time dependent partial differential equations
    • Sarra S A 2005 Adaptive radial basis function method for time dependent partial differential equations Appl. Numer. Math. 54 79-94
    • (2005) Appl. Numer. Math. , vol.54 , Issue.1 , pp. 79-94
    • Sarra, S.A.1
  • 13
    • 33644593113 scopus 로고    scopus 로고
    • Numerical solution of the second kind integral equations using radial basis function networks
    • Golbabai A and Seifollahi S 2006 Numerical solution of the second kind integral equations using radial basis function networks Appl. Math. Comput. 174 877-83
    • (2006) Appl. Math. Comput. , vol.174 , Issue.2 , pp. 877-883
    • Golbabai, A.1    Seifollahi, S.2
  • 14
    • 34248228330 scopus 로고    scopus 로고
    • Radial basis function networks in the numerical solution of linear integro-differential equations
    • Golbabai A and Seifollahi S 2007 Radial basis function networks in the numerical solution of linear integro-differential equations Appl. Math. Comput. 188 427-32
    • (2007) Appl. Math. Comput. , vol.188 , Issue.1 , pp. 427-432
    • Golbabai, A.1    Seifollahi, S.2
  • 15
    • 0032584954 scopus 로고    scopus 로고
    • Normalized Gaussian radial basis function networks
    • Bugmann G 1998 Normalized Gaussian radial basis function networks Neurocomputing 20 97-110
    • (1998) Neurocomputing , vol.20 , Issue.1-3 , pp. 97-110
    • Bugmann, G.1
  • 16
    • 0031270611 scopus 로고    scopus 로고
    • Growing radial basis neural networks: Merging supervised and unsupervised learning with network growth techniques
    • Karayiannis N B and Mi G W 1997 Growing radial basis neural networks: merging supervised and unsupervised learning with network growth techniques IEEE Trans. Neural Netw. 8 1492-506
    • (1997) IEEE Trans. Neural Netw. , vol.8 , Issue.6 , pp. 1492-1506
    • Karayiannis, N.B.1    Mi, G.W.2
  • 17
    • 0036964229 scopus 로고    scopus 로고
    • A constructive algorithm for feedforward neural networks with incremental training
    • Liu D, Chang T-S and Zhang Y 2002 A constructive algorithm for feedforward neural networks with incremental training IEEE Trans. Circuits Syst. 49 1876-9
    • (2002) IEEE Trans. Circuits Syst. , vol.49 , Issue.12 , pp. 1876-1879
    • Liu, D.1    Chang, T.-S.2    Zhang, Y.3
  • 18
    • 47749122691 scopus 로고    scopus 로고
    • Biazar J and Ghazvini H He's homotopy perturbation method for solving systems of Volterra integral equations of the second kind Chaos Solitons Fractals submitted
    • Biazar, J.1    Ghazvini, H.2
  • 19
    • 47749106536 scopus 로고    scopus 로고
    • Golbabai A and Keramati B Easy computational approach to solution of system of linear Fredholm integral equations Chaos Solitons Fractals submitted
    • Golbabai, A.1    Keramati, B.2
  • 20
    • 34249017039 scopus 로고    scopus 로고
    • A numerical solution for solving system of Fredholm integral equations by using modified homotopy perturbation method
    • Javidi M A and Golbabai A 2007 A numerical solution for solving system of Fredholm integral equations by using modified homotopy perturbation method Chaos Solitons Fractals 189 1921-8
    • (2007) Chaos Solitons Fractals , vol.189 , pp. 1921-1928
    • Javidi, M.A.1    Golbabai, A.2
  • 22
    • 0036698972 scopus 로고    scopus 로고
    • Artificial neural network-based peak load forecasting using conjugate gradient methods
    • Saini L M and Soni M K 2002 Artificial neural network-based peak load forecasting using conjugate gradient methods IEEE Trans. Power Syst. 17 907-12
    • (2002) IEEE Trans. Power Syst. , vol.17 , Issue.3 , pp. 907-912
    • Saini, L.M.1    Soni, M.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.