-
1
-
-
0001243359
-
Minimizing total variation flow
-
F. Andreu, C. Ballester, V. Caselles, and J. M. Mazón. Minimizing total variation flow, Differential and Integral Equations, 14(2001) 321–360.
-
(2001)
Differential and Integral Equations
, vol.14
, pp. 321-360
-
-
Andreu, F.1
Ballester, C.2
Caselles, V.3
Mazón, J.M.4
-
2
-
-
0742294219
-
Towards bridging scale-space and multiscale frame analyses
-
A. A. Petrosian and F. G. Meyer, editors, Kluwer, Dordrecht
-
Y. Bao and H. Krim. Towards bridging scale-space and multiscale frame analyses, In A. A. Petrosian and F. G. Meyer, editors, Wavelets in Signal and Image Analysis, volume 19 of Computational Imaging and Vision, chapter 6. Kluwer, Dordrecht, 2001.
-
(2001)
Wavelets in Signal and Image Analysis, Volume 19 of Computational Imaging and Vision, Chapter 6
-
-
Bao, Y.1
Krim, H.2
-
3
-
-
24044447221
-
Mathematical concepts of multiscale smoothing
-
K. Bredies, D. A. Lorenz, and P. Maass. Mathematical concepts of multiscale smoothing, Applied and Computational Harmonic Analysis, 19(2005), 141–161.
-
(2005)
Applied and Computational Harmonic Analysis
, vol.19
, pp. 141-161
-
-
Bredies, K.1
Lorenz, D.A.2
Maass, P.3
-
4
-
-
0036836408
-
New multiscale transforms, minimum total variation synthesis: Applications to edge-preserving image reconstruction
-
E. J. Candés and F. Guo. New multiscale transforms, minimum total variation synthesis: Applications to edge-preserving image reconstruction, Signal Processing, 82(2002), 1519–1543.
-
(2002)
Signal Processing
, vol.82
, pp. 1519-1543
-
-
Candés, E.J.1
Guo, F.2
-
5
-
-
0026821645
-
Image selective smoothing and edge detection by nonlinear diffusion
-
F. Catté, P.-L. Lions, J.-M. Morel, and T. Coll. Image selective smoothing and edge detection by nonlinear diffusion, SIAM Journal on Numerical Analysis, 29(1992), 182–193.
-
(1992)
SIAM Journal on Numerical Analysis
, vol.29
, pp. 182-193
-
-
Catté, F.1
Lions, P.-L.2
Morel, J.-M.3
Coll, T.4
-
6
-
-
0032022704
-
Nonlinear wavelet image processing: Variational problems, compression, and noise removal through wavelet shrinkage
-
A. Chambolle, R. DeVore, N.-Y. Lee, and B. J. Lucier. Nonlinear wavelet image processing: Variational problems, compression, and noise removal through wavelet shrinkage, IEEE Transactions on Image Processing, 7(1998), 319–335.
-
(1998)
IEEE Transactions on Image Processing
, vol.7
, pp. 319-335
-
-
Chambolle, A.1
Devore, R.2
Lee, N.-Y.3
Lucier, B.J.4
-
7
-
-
0035397770
-
Interpreting translation-invariant wavelet shrinkage as a new image smoothing scale space
-
A. Chambolle and B. L. Lucier. Interpreting translation-invariant wavelet shrinkage as a new image smoothing scale space, IEEE Transactions on Image Processing, 10(2001), 993–1000.
-
(2001)
IEEE Transactions on Image Processing
, vol.10
, pp. 993-1000
-
-
Chambolle, A.1
Lucier, B.L.2
-
8
-
-
0034442212
-
Total variation improved wavelet thresholding in image compression
-
Vancouver, Canada
-
T. F. Chan and H. M. Zhou. Total variation improved wavelet thresholding in image compression, In “Proc. Seventh International Conference on Image Processing,” volume II, pages 391–394, Vancouver, Canada 2000.
-
(2000)
Proc. Seventh International Conference on Image Processing, Volume II
, pp. 391-394
-
-
Chan, T.F.1
Zhou, H.M.2
-
9
-
-
84997822230
-
Two deterministic half-quadratic regularization algorithms for computed imaging
-
P. Charbonnier, L. Blanc-Féraud, G. Aubert, and M. Barlaud. Two deterministic half-quadratic regularization algorithms for computed imaging, Proc. IEEE International Conference on Image Processing (ICIP-94, Austin, Nov. 13-16, 1994), 2(1994), 168–172.
-
(1994)
Proc. IEEE International Conference on Image Processing (ICIP-94, Austin, Nov. 13-16, 1994)
, vol.2
, pp. 168-172
-
-
Charbonnier, P.1
Blanc-Féraud, L.2
Aubert, G.3
Barlaud, M.4
-
10
-
-
0038246283
-
Harmonic analysis in the space BV
-
A. Cohen, W. Dahmen, I. Daubechies, and R. DeVore. Harmonic analysis in the space BV, Revista Matematica Iberoamericana, 19(2003), 235–262.
-
(2003)
Revista Matematica Iberoamericana
, vol.19
, pp. 235-262
-
-
Cohen, A.1
Dahmen, W.2
Daubechies, I.3
Devore, R.4
-
12
-
-
0013277538
-
Combining the calculus of variations and wavelets for image enhancement
-
R. R. Coifman and A. Sowa. Combining the calculus of variations and wavelets for image enhancement, Applied and Computational Harmonic Analysis, 9(2000), 1–18.
-
(2000)
Applied and Computational Harmonic Analysis
, vol.9
, pp. 1-18
-
-
Coifman, R.R.1
Sowa, A.2
-
13
-
-
0042383461
-
New methods of controlled total variation reduction for digital functions
-
R. R. Coifman and A. Sowa. New methods of controlled total variation reduction for digital functions, SIAM Journal on Numerical Analysis, 39(2001), 480–498.
-
(2001)
SIAM Journal on Numerical Analysis
, vol.39
, pp. 480-498
-
-
Coifman, R.R.1
Sowa, A.2
-
15
-
-
20144365032
-
Variational image restoration by means of wavelets: Simultaneous decomposition, deblurring and denoising
-
I. Daubechies and G. Teschke. Variational image restoration by means of wavelets: Simultaneous decomposition, deblurring and denoising, Applied and Computational Harmonic Analysis, 19(2005), 1–16.
-
(2005)
Applied and Computational Harmonic Analysis
, vol.19
, pp. 1-16
-
-
Daubechies, I.1
Teschke, G.2
-
16
-
-
27244433311
-
Stability and local feature enhancement of higher order nonlinear diffusion filtering
-
S. Didas, J. Weickert, and B. Burgeth. Stability and local feature enhancement of higher order nonlinear diffusion filtering, in “Pattern Recognition”(eds. W. Kropatsch, R. Sablatnig, and A. Hanbury), volume 3663 of Lecture Notes in Computer Science, pages 451–458. Springer, 2005.
-
(2005)
Pattern Recognition(Eds. W. Kropatsch, R. Sablatnig, and A. Hanbury), Volume 3663 of Lecture Notes in Computer Science
, pp. 451-458
-
-
Didas, S.1
Weickert, J.2
Burgeth, B.3
-
18
-
-
0041958932
-
Ideal spatial adaption by wavelet shrinkage
-
D. L. Donoho and I. M. Johnstone. Ideal spatial adaption by wavelet shrinkage, Biometrica, 81(1994), 425–455.
-
(1994)
Biometrica
, vol.81
, pp. 425-455
-
-
Donoho, D.L.1
Johnstone, I.M.2
-
19
-
-
3543065802
-
On the axioms of scale space theory
-
R. Duits, L. Florack, J. de Graaf, and B. Ter Haar Romeny. On the axioms of scale space theory, Journal of Mathematical Imaging and Vision, 20(2004), 267–298.
-
(2004)
Journal of Mathematical Imaging and Vision
, vol.20
, pp. 267-298
-
-
Duits, R.1
Florack, L.2
de Graaf, J.3
Ter Haar Romeny, B.4
-
20
-
-
0141975226
-
Reconstruction of wavelet coefficients using total-variation minimization
-
S. Durand and J. Froment. Reconstruction of wavelet coefficients using total-variation minimization, SIAM Journal on Scientific Computing, 24(2003), 1754–1767.
-
(2003)
SIAM Journal on Scientific Computing
, vol.24
, pp. 1754-1767
-
-
Durand, S.1
Froment, J.2
-
21
-
-
24644489617
-
Restoration of wavelet coefficients by minimizing a specially designed objective function
-
(eds. O. Faugeras and N. Paragios), Nice, France, INRIA
-
S. Durand and M. Nikolova. Restoration of wavelet coefficients by minimizing a specially designed objective function, in “Proc. Second IEEE Workshop on Geometric and Level Set Methods in Computer Vision” (eds. O. Faugeras and N. Paragios), Nice, France, INRIA, 2003.
-
(2003)
Proc. Second IEEE Workshop on Geometric and Level Set Methods in Computer Vision
-
-
Durand, S.1
Nikolova, M.2
-
22
-
-
0032282297
-
Wavelet shrinkage denoising using the non-negative garrote
-
H.-Y. Gao. Wavelet shrinkage denoising using the non-negative garrote, Journal of Computational and Graphical Statistics, 7(1998), 469–488.
-
(1998)
Journal of Computational and Graphical Statistics
, vol.7
, pp. 469-488
-
-
Gao, H.-Y.1
-
23
-
-
0001223708
-
Basic theory on normalization of pattern (In case of typical one-dimensional pat-tern)(in Japanese)
-
T. Iijima. Basic theory on normalization of pattern (in case of typical one-dimensional pat-tern)(in Japanese), Bulletin of the Electrotechnical Laboratory, 26(1962), 368–388.
-
(1962)
Bulletin of the Electrotechnical Laboratory
, vol.26
, pp. 368-388
-
-
Iijima, T.1
-
24
-
-
0036469702
-
Nonlinear anisotropic diffusion filtering for multiscale edge enhancement
-
S. L. Keeling and R. Stollberger. Nonlinear anisotropic diffusion filtering for multiscale edge enhancement, Inverse Problems, 18(2002), 175–190.
-
(2002)
Inverse Problems
, vol.18
, pp. 175-190
-
-
Keeling, S.L.1
Stollberger, R.2
-
25
-
-
4544278119
-
Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time
-
M. Lysaker, A. Lundervold, and X.-C. Tai. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time, IEEE Transactions on Image Processing, 12(2003), 1579–1590.
-
(2003)
IEEE Transactions on Image Processing
, vol.12
, pp. 1579-1590
-
-
Lysaker, M.1
Lundervold, A.2
Tai, X.-C.3
-
26
-
-
0013212026
-
Mathematical analysis of a model which combines total variation and wavelet for image restoration
-
F. Malgouyres. Mathematical analysis of a model which combines total variation and wavelet for image restoration, Inverse Problems, 2(2002), 1–10.
-
(2002)
Inverse Problems
, vol.2
, pp. 1-10
-
-
Malgouyres, F.1
-
29
-
-
35248814904
-
Rotationally invariant wavelet shrinkage
-
B. Michaelis and G. Krell, editors, Springer, Berlin
-
P. Mrázek and J. Weickert. Rotationally invariant wavelet shrinkage. In B. Michaelis and G. Krell, editors, “Pattern Recognition,” volume 2781 of Lecture Notes in Computer Science, pages 156–163. Springer, Berlin, 2003.
-
(2003)
Pattern Recognition,” Volume 2781 of Lecture Notes in Computer Science
, pp. 156-163
-
-
Mrázek, P.1
Weickert, J.2
-
30
-
-
24944475246
-
Diffusion-inspired shrinkage functions and stability results for wavelet denoising
-
P. Mrázek, J. Weickert, and G. Steidl. Diffusion-inspired shrinkage functions and stability results for wavelet denoising, International Journal of Computer Vision, 64(2005), 171–186.
-
(2005)
International Journal of Computer Vision
, vol.64
, pp. 171-186
-
-
Mrázek, P.1
Weickert, J.2
Steidl, G.3
-
31
-
-
85044930745
-
On iterations and scales of nonlinear filters
-
P. Mrázek, J. Weickert, G. Steidl, and M. Welk. On iterations and scales of nonlinear filters, in “Proc. of the Computer Vision Winter Workshop 2003” (ed. O. Drbohlav), pages 61–66. Czech Pattern Recognition Society, 2003.
-
(2003)
Society
-
-
Mrázek, P.1
Weickert, J.2
Steidl, G.3
Welk, M.4
-
32
-
-
0031250126
-
Regularization, scale-space and edge detection filters
-
M. Nielsen, L. Florack, and R. Deriche. Regularization, scale-space and edge detection filters, Journal of Mathematical Imaging and Vision, 7(1997), 291–307.
-
(1997)
Journal of Mathematical Imaging and Vision
, vol.7
, pp. 291-307
-
-
Nielsen, M.1
Florack, L.2
Deriche, R.3
-
33
-
-
0031071762
-
A general framework for geometry-driven evolution equations
-
W. J. Niessen, B. M. ter Haar Romeny, L. M. Florack, and M. A. Viergever. A general framework for geometry-driven evolution equations, International Journal of Computer Vision, 21(1997), 187–205.
-
(1997)
International Journal of Computer Vision
, vol.21
, pp. 187-205
-
-
Niessen, W.J.1
Ter Haar Romeny, B.M.2
Florack, L.M.3
Viergever, M.A.4
-
34
-
-
0025521920
-
Biased anisotropic diffusion – a unified regularization and diffusion approach to edge detection
-
N. Nordström. Biased anisotropic diffusion – a unified regularization and diffusion approach to edge detection, Image and Vision Computing, 8(1990), 318–327.
-
(1990)
Image and Vision Computing
, vol.8
, pp. 318-327
-
-
Nordström, N.1
-
36
-
-
44049111982
-
Nonlinear total variation based noise removal algorithms
-
L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms, Physica D, 60(1992), 259–268.
-
(1992)
Physica D
, vol.60
, pp. 259-268
-
-
Rudin, L.I.1
Osher, S.2
Fatemi, E.3
-
37
-
-
0031653225
-
Denoising with higher order derivatives of bounded variation and an application to parameter estimation
-
O. Scherzer. Denoising with higher order derivatives of bounded variation and an application to parameter estimation, Computing, 60(1998), 1–27.
-
(1998)
Computing
, vol.60
, pp. 1-27
-
-
Scherzer, O.1
-
39
-
-
0028423131
-
Unique reconstruction of piecewise smooth images by minimizing strictly convex non-quadratic functionals
-
C. Schnörr. Unique reconstruction of piecewise smooth images by minimizing strictly convex non-quadratic functionals, Journal of Mathematical Imaging and Vision, 4(1994)189–198.
-
(1994)
Journal of Mathematical Imaging and Vision
, vol.4
, pp. 189-198
-
-
Schnörr, C.1
-
40
-
-
27744574209
-
Image decomposition via the combination of sparse representations and a variational approach
-
J.-L. Starck, M. Elad, and D. L. Donoho. Image decomposition via the combination of sparse representations and a variational approach, IEEE Transactions on Image Processing, 14(2005):1570–1582.
-
(2005)
IEEE Transactions on Image Processing
, vol.14
, pp. 1570-1582
-
-
Starck, J.-L.1
Elad, M.2
Donoho, D.L.3
-
41
-
-
13244274395
-
On the equivalence of soft wavelet shrinkage, total variation diffusion, total variation regularization, and SIDEs
-
G. Steidl, J. Weickert, T. Brox, P. Mrázek, and M. Welk. On the equivalence of soft wavelet shrinkage, total variation diffusion, total variation regularization, and SIDEs, SIAM Journal on Numerical Analysis, 42(2004), 686–713.
-
(2004)
SIAM Journal on Numerical Analysis
, vol.42
, pp. 686-713
-
-
Steidl, G.1
Weickert, J.2
Brox, T.3
Mrázek, P.4
Welk, M.5
-
42
-
-
0004276192
-
-
Princeton University Press, Princeton, New Jersey
-
M. E. Taylor. “Pseudodifferential Operators,” Princeton University Press, Princeton, New Jersey, 1981.
-
(1981)
Pseudodifferential Operators
-
-
Taylor, M.E.1
-
45
-
-
84892224630
-
Diffusion filters and wavelets: What can they learn from each other?
-
(eds. N. Paragios, Y. Chen, and O. Faugeras). Springer, New York
-
J. Weickert, G. Steidl, P. Mrázek, M. Welk, and T. Brox. Diffusion filters and wavelets: What can they learn from each other?, in “Handbook of Mathematical Models in Computer Vision” (eds. N. Paragios, Y. Chen, and O. Faugeras). Springer, New York, 2006.
-
(2006)
Handbook of Mathematical Models in Computer Vision
-
-
Weickert, J.1
Steidl, G.2
Mrázek, P.3
Welk, M.4
Brox, T.5
-
46
-
-
85044942069
-
-
Institute for Mathematics and its Applications, University of Minnesota, Minneapolis, MN, U.S.A
-
M. Welk, G. Steidl, and J. Weickert. Locally analytic schemes: A link between diffusion filtering and wavelet shrinkage, Technical Report 2100, Institute for Mathematics and its Applications, University of Minnesota, Minneapolis, MN, U.S.A., 2006.
-
(2006)
Locally Analytic Schemes: A Link between Diffusion Filtering and Wavelet Shrinkage, Technical Report 2100
-
-
Welk, M.1
Steidl, G.2
Weickert, J.3
-
47
-
-
0004208255
-
-
Springer, Berlin, third edition
-
D. Werner. “Funktional Analysis,” Springer, Berlin, third edition, 2000.
-
(2000)
Funktional Analysis
-
-
Werner, D.1
-
48
-
-
0020891393
-
Scale-space filtering
-
Karlsruhe, Germany, August
-
A. P. Witkin. Scale-space filtering, In “Proceedings of the 8th International Joint Conference on Artificial Intelligence” volume 2, pages 945–951, Karlsruhe, Germany, August 1983.
-
(1983)
Proceedings of the 8Th International Joint Conference on Artificial Intelligence
, vol.2
, pp. 945-951
-
-
Witkin, A.P.1
-
49
-
-
0034298888
-
Fourth-order partial differential equations for noise removal
-
Y.-L. You and M. Kaveh. Fourth-order partial differential equations for noise removal, IEEE Transactions on Image Processing, 9(2000), 1723–1730.
-
(2000)
IEEE Transactions on Image Processing
, vol.9
, pp. 1723-1730
-
-
You, Y.-L.1
Kaveh, M.2
|