-
1
-
-
0014816696
-
Orientation of human and avian erythrocytes in radio-frequency fields
-
Griffin, J. L. 1970. Orientation of human and avian erythrocytes in radio-frequency fields. Exp. Cell Res. 61:113-120.
-
(1970)
Exp. Cell Res
, vol.61
, pp. 113-120
-
-
Griffin, J.L.1
-
2
-
-
0022355917
-
Orientation of Schizosaccharomyces pombe nonliving cells under alternating uniform and nonuniform electric fields
-
Iglesias, F. J., M. C. Lopes, C. Santamaria, and A. Dominguez. 1985. Orientation of Schizosaccharomyces pombe nonliving cells under alternating uniform and nonuniform electric fields. Biophys. J. 48:712-726.
-
(1985)
Biophys. J
, vol.48
, pp. 712-726
-
-
Iglesias, F.J.1
Lopes, M.C.2
Santamaria, C.3
Dominguez, A.4
-
3
-
-
0016433237
-
Low frequency electric field induced changes in the shape and motility of amoebas
-
Friend, A. W., Jr., E. D. Finch, and H. P. Schwan. 1975. Low frequency electric field induced changes in the shape and motility of amoebas. Science. 187:357-359.
-
(1975)
Science
, vol.187
, pp. 357-359
-
-
Friend Jr., A.W.1
Finch, E.D.2
Schwan, H.P.3
-
4
-
-
0021240720
-
Viscoelastic properties of erythrocyte membranes in high-frequency electric field
-
Engelhardt, H., H. Gaub, and E. Sackman. 1984. Viscoelastic properties of erythrocyte membranes in high-frequency electric field. Nature. 307: 378-380.
-
(1984)
Nature
, vol.307
, pp. 378-380
-
-
Engelhardt, H.1
Gaub, H.2
Sackman, E.3
-
5
-
-
0024671189
-
Electro-mechanical permeabilization of lipid vesicles. Role of membrane tension and compressibility
-
Needham, D., and R. M. Hochmuth. 1989. Electro-mechanical permeabilization of lipid vesicles. Role of membrane tension and compressibility. Biophys. J. 55:1001-1009.
-
(1989)
Biophys. J
, vol.55
, pp. 1001-1009
-
-
Needham, D.1
Hochmuth, R.M.2
-
6
-
-
21244431518
-
Electro-deformation and -poration of giant vesicles viewed with high temporal resolution
-
Riske, K., and R. Dimova. 2005. Electro-deformation and -poration of giant vesicles viewed with high temporal resolution. Biophys. J. 88: 1143-1155.
-
(2005)
Biophys. J
, vol.88
, pp. 1143-1155
-
-
Riske, K.1
Dimova, R.2
-
7
-
-
0023994782
-
Deformation of spherical vesicles by electric fields
-
Winterhalter, M., and W. Helfrich. 1988. Deformation of spherical vesicles by electric fields. J. Coll. Int. Sci. 122:583-586.
-
(1988)
J. Coll. Int. Sci
, vol.122
, pp. 583-586
-
-
Winterhalter, M.1
Helfrich, W.2
-
8
-
-
0026242458
-
Transient and steady-state deformations of a vesicle with an insulating membrane in response to step-function or alternating electric fields
-
Hyuga, H., K. Kinosita, Jr., and N. Wakabayashi. 1991. Transient and steady-state deformations of a vesicle with an insulating membrane in response to step-function or alternating electric fields. Jpn. J. Appl. Phys. 30:2649-2656.
-
(1991)
Jpn. J. Appl. Phys
, vol.30
, pp. 2649-2656
-
-
Hyuga, H.1
Kinosita Jr., K.2
Wakabayashi, N.3
-
9
-
-
0002417614
-
Electric-field-dependent thermal fluctuations of giant vesicles
-
Mitov, M., P. Méléard, M. Winterhalter, M. I. Angelova, and P. Bothorel. 1993. Electric-field-dependent thermal fluctuations of giant vesicles. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics. 48:628-631.
-
(1993)
Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics
, vol.48
, pp. 628-631
-
-
Mitov, M.1
Méléard, P.2
Winterhalter, M.3
Angelova, M.I.4
Bothorel, P.5
-
10
-
-
33947609696
-
The prolate-to-oblate shape transition of phospholipid vesicles in response to frequency variation of an AC electric field can be explained by the dielectric anisotropy of a phospholipid bilayer
-
Peterlin, P., S. Svetina, and B. Žekś. 2007. The prolate-to-oblate shape transition of phospholipid vesicles in response to frequency variation of an AC electric field can be explained by the dielectric anisotropy of a phospholipid bilayer. J. Phys. Condens. Matter. 19:136220.
-
(2007)
J. Phys. Condens. Matter
, vol.19
, pp. 136220
-
-
Peterlin, P.1
Svetina, S.2
Žekś, B.3
|