-
2
-
-
0000787419
-
-
Y. Ohmori, M. Uchida, K. Muro, and K. Yoshino: Jpn. J. Appl. Phys. 30 (1991) L1941.
-
Y. Ohmori, M. Uchida, K. Muro, and K. Yoshino: Jpn. J. Appl. Phys. 30 (1991) L1941.
-
-
-
-
3
-
-
0000045996
-
-
M. Grell, W. Knoll, D. Lupo, A. Meisel, T. Miteva, D. Neher. H. G. Nothofer, U. Scherf, and A. Yasuda: Adv. Mater. 11 (1999) 671.
-
(1999)
Adv. Mater
, vol.11
, pp. 671
-
-
Grell, M.1
Knoll, W.2
Lupo, D.3
Meisel, A.4
Miteva, T.5
Neher, D.6
Nothofer, H.G.7
Scherf, U.8
Yasuda, A.9
-
4
-
-
0001637904
-
-
K. S. Whitehead, M. Grell, D. D. C. Bradley, M. Jandke, and P. Strohriegl: Appl. Phys. Lett. 76 (2000) 2946.
-
(2000)
Appl. Phys. Lett
, vol.76
, pp. 2946
-
-
Whitehead, K.S.1
Grell, M.2
Bradley, D.D.C.3
Jandke, M.4
Strohriegl, P.5
-
6
-
-
28844480065
-
-
M. Misaki, Y. Ueda, S. Nagamatsu, M. Chikamatsu, Y. Yoshida, N. Tanigaki, and K. Yase: Appl. Phys. Lett. 87 (2005) 243503.
-
(2005)
Appl. Phys. Lett
, vol.87
, pp. 243503
-
-
Misaki, M.1
Ueda, Y.2
Nagamatsu, S.3
Chikamatsu, M.4
Yoshida, Y.5
Tanigaki, N.6
Yase, K.7
-
10
-
-
0032142591
-
-
M. Grell, D. D. C. Bradley, X. Long, T. Chamberlain, M. Inbasekaran, E. P. Woo, and M. Soliman: Acta Polym. 49 (1998) 439.
-
(1998)
Acta Polym
, vol.49
, pp. 439
-
-
Grell, M.1
Bradley, D.D.C.2
Long, X.3
Chamberlain, T.4
Inbasekaran, M.5
Woo, E.P.6
Soliman, M.7
-
11
-
-
0033704652
-
-
K. S. Whitehead, M. Grell, D. D. C. Bradley, M. Inbasekaran, and E. P. Woo: Synth. Met. 111 (2000) 181.
-
(2000)
Synth. Met
, vol.111
, pp. 181
-
-
Whitehead, K.S.1
Grell, M.2
Bradley, D.D.C.3
Inbasekaran, M.4
Woo, E.P.5
-
12
-
-
0032669335
-
-
M. Grell, D. D. C. Bradley, G. Ungar, J. Hill, and K. S. Whitehead: Macromolecules 32 (1999) 5810.
-
(1999)
Macromolecules
, vol.32
, pp. 5810
-
-
Grell, M.1
Bradley, D.D.C.2
Ungar, G.3
Hill, J.4
Whitehead, K.S.5
-
13
-
-
0343019461
-
-
to be published in
-
T. Endo, S. Ikame, Y. Suzuki, T. Kobayashi, S. Murakami, and H. Naito: to be published in Thin Solid Films.
-
Thin Solid Films
-
-
Endo, T.1
Ikame, S.2
Suzuki, Y.3
Kobayashi, T.4
Murakami, S.5
Naito, H.6
-
14
-
-
4544267173
-
-
M. Misaki, Y. Ueda, S. Nagamatsu, Y. Yoshida, N. Tanigaki, and K. Yase: Macromolecules 37 (2004) 6926.
-
(2004)
Macromolecules
, vol.37
, pp. 6926
-
-
Misaki, M.1
Ueda, Y.2
Nagamatsu, S.3
Yoshida, Y.4
Tanigaki, N.5
Yase, K.6
-
15
-
-
0342409369
-
-
A. Marietta, D. Gonçalves, O. N. Oliveira, Jr., R. M. Faria, and F. E. G. Guimarães: Macromolecules 33 (2000) 5886.
-
(2000)
Macromolecules
, vol.33
, pp. 5886
-
-
Marietta, A.1
Gonçalves, D.2
Oliveira Jr., O.N.3
Faria, R.M.4
Guimarães, F.E.G.5
-
16
-
-
54249109429
-
-
Such an exciton migration from a donor segment with shorter conjugation length to an acceptor segment with longer conjugation length is very efficient when the transition dipole moment of the acceptor is parallel to that of the donor. Therefore, the diffusion process of excitons is anisotropic in aligned thin films. However, the anisotropy of steady-state PL shown in Fig. 2 is determined by the orientation of the segments with the lowest excited-state energy (the longest conjugation length, Anisotropy of the diffusion length of excitons may be measured by a steady-state photoconductivity method [M. Pope and C. E. Swenberg: Electronic Processes in Organic Crystals and Polymers Oxford University Press, New York, 1999
-
Such an exciton migration from a donor segment with shorter conjugation length to an acceptor segment with longer conjugation length is very efficient when the transition dipole moment of the acceptor is parallel to that of the donor. Therefore, the diffusion process of excitons is anisotropic in aligned thin films. However, the anisotropy of steady-state PL shown in Fig. 2 is determined by the orientation of the segments with the lowest excited-state energy (the longest conjugation length). Anisotropy of the diffusion length of excitons may be measured by a steady-state photoconductivity method [M. Pope and C. E. Swenberg: Electronic Processes in Organic Crystals and Polymers (Oxford University Press, New York, 1999)].
-
-
-
-
19
-
-
54249124535
-
-
A complete assignment of the diffraction peaks is required for better understanding of the in-plane structure of aligned β-phase F8 thin films. However, grazing incidence X-ray studies seem to be extremely difficult because the diffraction intensities from β-phase thin films are too weak to be detected
-
A complete assignment of the diffraction peaks is required for better understanding of the in-plane structure of aligned β-phase F8 thin films. However, grazing incidence X-ray studies seem to be extremely difficult because the diffraction intensities from β-phase thin films are too weak to be detected.
-
-
-
|