-
1
-
-
0000515046
-
The homotopy groups of the integral cycle groups
-
[A1]
-
[A1] F.J. ALMGREN, JR., The homotopy groups of the integral cycle groups, Topology 1 (1962), 257-299.
-
(1962)
Topology
, vol.1
, pp. 257-299
-
-
Almgren Jr., F.J.1
-
3
-
-
51649152423
-
Semianalytic and subanalytic sets
-
[BM]
-
[BM] E. BIERSTONE, P. MILMAN, Semianalytic and subanalytic sets, IHES Publ. Math. 67 (1988), 5-42.
-
(1988)
IHES Publ. Math.
, vol.67
, pp. 5-42
-
-
Bierstone, E.1
Milman, P.2
-
4
-
-
84966211778
-
Simplicial structure of real analytic cut loci
-
[Bu]
-
[Bu] M. BUCHNER, Simplicial structure of real analytic cut loci, Proc. Amer. Math. Soc. 64 (1977), 118-121.
-
(1977)
Proc. Amer. Math. Soc.
, vol.64
, pp. 118-121
-
-
Buchner, M.1
-
5
-
-
84972492436
-
Simple closed geodesics on convex surfaces
-
[CC]
-
[CC] E. CALABI, J. CAO, Simple closed geodesics on convex surfaces, J. Diff. Geom. 36 (1992), 517-549.
-
(1992)
J. Diff. Geom.
, vol.36
, pp. 517-549
-
-
Calabi, E.1
Cao, J.2
-
6
-
-
84904981611
-
Area and the length of the shortest closed geodesic
-
[Cr]
-
[Cr] C.B. CROKE, Area and the length of the shortest closed geodesic, J. Diff. Geom. 27 (1988), 1-21.
-
(1988)
J. Diff. Geom.
, vol.27
, pp. 1-21
-
-
Croke, C.B.1
-
7
-
-
0242349376
-
Universal volume bounds in Riemannian manifolds
-
[CrK], to appear; preprint arXiv.org/math.DG/0302248
-
[CrK] C.B. CROKE, M.G. KATZ, Universal volume bounds in Riemannian manifolds, Surveys in Diff. Geom., to appear; preprint arXiv.org/math.DG/0302248.
-
Surveys in Diff. Geom.
-
-
Croke, C.B.1
Katz, M.G.2
-
8
-
-
84956267209
-
Filling Riemannian manifolds
-
[G]
-
[G] M. GROMOV, Filling Riemannian manifolds, J. Diff. Geom. 18 (1983), 1-147.
-
(1983)
J. Diff. Geom.
, vol.18
, pp. 1-147
-
-
Gromov, M.1
-
9
-
-
21444454805
-
Geodesic nets on the 2-sphere
-
[HM]
-
[HM] J. HASS, F. MORGAN, Geodesic nets on the 2-sphere, Proc. of the AMS 124 (1996), 3843-3850.
-
(1996)
Proc. of the AMS
, vol.124
, pp. 3843-3850
-
-
Hass, J.1
Morgan, F.2
-
10
-
-
84972530406
-
The filling radius of two-point homogeneous spaces
-
[K]
-
[K] M.G. KATZ, The filling radius of two-point homogeneous spaces, J. Diff. Geom. 18 (1983), 505-511.
-
(1983)
J. Diff. Geom.
, vol.18
, pp. 505-511
-
-
Katz, M.G.1
-
11
-
-
0010245689
-
The length of a closed geodesic on a compact surface
-
[M]
-
[M] M. MAEDA, The length of a closed geodesic on a compact surface, Kyushu J. Math. 48:1 (1994), 9-18.
-
(1994)
Kyushu J. Math.
, vol.48
, Issue.1
, pp. 9-18
-
-
Maeda, M.1
-
12
-
-
0004190360
-
-
[Mi], Princeton University Press
-
[Mi] J. MILNOR, Morse Theory, Princeton University Press, 1963.
-
(1963)
Morse Theory
-
-
Milnor, J.1
-
13
-
-
0036367770
-
The length of the shortest closed geodesic on a 2-dimensional sphere
-
[NR1]
-
[NR1] A. NABUTOVSKY, R. ROTMAN, The length of the shortest closed geodesic on a 2-dimensional sphere, IMRN 2002:23 (2002), 1211-1222.
-
(2002)
IMRN
, vol.2002
, Issue.23
, pp. 1211-1222
-
-
Nabutovsky, A.1
Rotman, R.2
-
14
-
-
3242788743
-
Upper bounds on the length of a shortest closed geodesic and quantitative Hurewicz theorem
-
[NR2]
-
[NR2] A. NABUTOVSKY, R. ROTMAN, Upper bounds on the length of a shortest closed geodesic and quantitative Hurewicz theorem, J. Europ. Math. Soc. (JEMS) 5 (2003), 203-244.
-
(2003)
J. Europ. Math. Soc. (JEMS)
, vol.5
, pp. 203-244
-
-
Nabutovsky, A.1
Rotman, R.2
-
15
-
-
0003356368
-
Existence and regularity of minimal surfaces on riemannian manifolds
-
[P], Princeton University Press
-
[P] J. PITTS, Existence and Regularity of Minimal Surfaces on Riemannian Manifolds, Princeton University Press, Mathematical Notes 27 (1981).
-
(1981)
Mathematical Notes
, vol.27
-
-
Pitts, J.1
-
16
-
-
0034421904
-
Upper bounds on the length of the shortest closed geodesic on simply connected manifolds
-
[R]
-
[R] R. ROTMAN, Upper bounds on the length of the shortest closed geodesic on simply connected manifolds, Math. Z. 233 (2000), 365-398.
-
(2000)
Math. Z.
, vol.233
, pp. 365-398
-
-
Rotman, R.1
-
17
-
-
4744354826
-
Filling radius and short closed geodesics of the 2-sphere
-
[S1], to appear
-
[S1] S. SABOURAU, Filling radius and short closed geodesics of the 2-sphere, Bull, de la SMF, to appear.
-
Bull, de la SMF
-
-
Sabourau, S.1
|