메뉴 건너뛰기




Volumn 4288 LNCS, Issue , 2006, Pages 36-47

Optimal algorithms for Tower of Hanoi problems with relaxed placement rules

Author keywords

[No Author keywords available]

Indexed keywords

HANOI PROBLEM; NON-TRIVIAL; OPTIMAL ALGORITHM; OPTIMALITY; SIZE DIFFERENCE; TIGHT BOUND;

EID: 47249136343     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11940128_6     Document Type: Conference Paper
Times cited : (5)

References (7)
  • 1
    • 77249100350 scopus 로고    scopus 로고
    • Final Project Report, supervised by D. Berend, Dept. of Mathematics and Computer Science, Ben-Gurion University
    • S. Beneditkis and I. Safro. Generalizations of the Tower of Hanoi Problem. Final Project Report, supervised by D. Berend, Dept. of Mathematics and Computer Science, Ben-Gurion University, 1998.
    • (1998) Generalizations of the Tower of Hanoi Problem
    • Beneditkis, S.1    Safro, I.2
  • 3
    • 33748340259 scopus 로고
    • The bottleneck towers of hanoi problem
    • D. Poole. The Bottleneck Towers of Hanoi Problem. J. of Recreational Math. 24 (1992), no.3, 203-207.
    • (1992) J. of Recreational Math. , vol.24 , Issue.3 , pp. 203-207
    • Poole, D.1
  • 4
    • 0347442142 scopus 로고
    • Variations on the Four-Post Tower of Hanoi Puzzle
    • P.K. Stockmayer. Variations on the Four-Post Tower of Hanoi Puzzle. CONGRESSUS NUMERANTIUM 102 (1994), 3-12. (Pubitemid 126096237)
    • (1994) CONGRESSUS NUMERANTIUM , Issue.102 , pp. 3-12
    • Stockmeyer, P.K.1
  • 6
    • 84957085104 scopus 로고    scopus 로고
    • In how many steps the k peg version of the towers of hanoi game can be solved?
    • M. Szegedy, In How Many Steps the k Peg Version of the Towers of Hanoi Game Can Be Solved?, Symposium on Theoretical Aspects of Computer Science 1563 (1999), 356.
    • (1999) Symposium on Theoretical Aspects of Computer Science , vol.1563 , pp. 356
    • Szegedy, M.1
  • 7
    • 0012538704 scopus 로고
    • The towers of brahma and hanoi revisited
    • D. Wood. The Towers of Brahma and Hanoi revisited. J. of Recreational Math. 14 (1981-1982), no.1, 17-24.
    • (1981) J. of Recreational Math. , vol.14 , Issue.1 , pp. 17-24
    • Wood, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.