-
1
-
-
34147162778
-
-
JCPSA6 0021-9606 10.1063/1.1747247
-
R. C. Tolman, J. Chem. Phys. JCPSA6 0021-9606 10.1063/1.1747247 17, 333 (1949).
-
(1949)
J. Chem. Phys.
, vol.17
, pp. 333
-
-
Tolman, R.C.1
-
3
-
-
0028766529
-
-
JCOMEL 0953-8984 10.1088/0953-8984/6/23A/001
-
J. S. Rowlinson, J. Phys.: Condens. Matter JCOMEL 0953-8984 10.1088/0953-8984/6/23A/001 6, A1 (1994).
-
(1994)
J. Phys.: Condens. Matter
, vol.6
, pp. 1
-
-
Rowlinson, J.S.1
-
5
-
-
27744534919
-
-
SSREDI 0167-5729 10.1016/j.surfrep.2005.08.002
-
A. I. Rusanov, Surf. Sci. Rep. SSREDI 0167-5729 10.1016/j.surfrep.2005. 08.002 58, 111 (2005).
-
(2005)
Surf. Sci. Rep.
, vol.58
, pp. 111
-
-
Rusanov, A.I.1
-
7
-
-
33244480646
-
-
JCPSA6 0021-9606 10.1063/1.449588
-
P. Phillips and P. U. Mohanty, J. Chem. Phys. JCPSA6 0021-9606 10.1063/1.449588 83, 6392 (1985).
-
(1985)
J. Chem. Phys.
, vol.83
, pp. 6392
-
-
Phillips, P.1
Mohanty, P.U.2
-
10
-
-
33244459340
-
-
JCPSA6 0021-9606 10.1063/1.2167642
-
E. M. Blokhuis and J. Kuipers, J. Chem. Phys. JCPSA6 0021-9606 10.1063/1.2167642 124, 074701 (2006).
-
(2006)
J. Chem. Phys.
, vol.124
, pp. 074701
-
-
Blokhuis, E.M.1
Kuipers, J.2
-
11
-
-
33645290542
-
-
AICEAC 0001-1541 10.1002/aic.10588
-
E. Santiso and A. Firoozabadi, AIChE J. AICEAC 0001-1541 10.1002/aic.10588 52, 311 (2006).
-
(2006)
AIChE J.
, vol.52
, pp. 311
-
-
Santiso, E.1
Firoozabadi, A.2
-
12
-
-
33845538601
-
-
JPHAC5 0305-4470 10.1088/0305-4470/17/6/009
-
J. S. Rowlinson, J. Phys. A JPHAC5 0305-4470 10.1088/0305-4470/17/6/009 17, L357 (1984).
-
(1984)
J. Phys. A
, vol.17
, pp. 357
-
-
Rowlinson, J.S.1
-
13
-
-
0000425087
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.29.6252
-
M. P. A. Fisher and M. Wortis, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.29.6252 29, 6252 (1984).
-
(1984)
Phys. Rev. B
, vol.29
, pp. 6252
-
-
Fisher, M.P.A.1
Wortis, M.2
-
14
-
-
0002652205
-
-
The three-dimensional Ising critical exponent values are not exact, however, they are known to three digits of decimals [PHYADX 0378-4371 10.1016/0378-4371(89)90109-X
-
The three-dimensional Ising critical exponent values are not exact, however, they are known to three digits of decimals [A. J. Liu and M. E. Fisher, Physica A PHYADX 0378-4371 10.1016/0378-4371(89)90109-X 156, 35 (1989)
-
(1989)
Physica A
, vol.156
, pp. 35
-
-
Liu, A.J.1
Fisher, M.E.2
-
15
-
-
0032500485
-
-
JPHAC5 0305-4470 10.1088/0305-4470/31/40/006
-
R. Guida and J. Zinn-Justin, J. Phys. A JPHAC5 0305-4470 10.1088/0305-4470/31/40/006 31, 8103 (1998)
-
(1998)
J. Phys. A
, vol.31
, pp. 8103
-
-
Guida, R.1
Zinn-Justin, J.2
-
16
-
-
0036792138
-
-
PRPLCM 0370-1573 10.1016/S0370-1573(02)00219-3
-
A. Pelissetto and E. Vicari, Phys. Rep. PRPLCM 0370-1573 10.1016/S0370-1573(02)00219-3 368, 549 (2002)].
-
(2002)
Phys. Rep.
, vol.368
, pp. 549
-
-
Pelissetto, A.1
Vicari, E.2
-
17
-
-
47249121532
-
-
The amplitude ξ0- is related to the corresponding amplitude for the one-phase region (above Tc) as ξ0- ξ0+ /1.96
-
The amplitude ξ0- is related to the corresponding amplitude for the one-phase region (above Tc) as ξ0- ξ0+ /1.96
-
-
-
-
18
-
-
0032544560
-
-
[JPHAC5 0305-4470 10.1088/0305-4470/31/37/002
-
[M. E. Fisher and S.-Y. Zinn, J. Phys. A JPHAC5 0305-4470 10.1088/0305-4470/31/37/002 31, L629 (1998)].
-
(1998)
J. Phys. A
, vol.31
, pp. 629
-
-
Fisher, M.E.1
Zinn, S.-Y.2
-
21
-
-
0013356201
-
-
The image density profile is calculated in the mean-field approximation for a flat interface as ρ (z) - ρc ± [ρ (±) - ρc] tanh (-z/2ξ) with the assumption that ρ (-) represents the density in the center of the droplet. The actual profile is smoothed even further by fluctuations. Moreover, the density profile for a suspended droplet, as obtained numerically by JCPSA6 0021-9606 10.1063/1.1730447
-
The image density profile is calculated in the mean-field approximation for a flat interface as ρ (z) - ρc ± [ρ (±) - ρc] tanh (-z/2ξ) with the assumption that ρ (-) represents the density in the center of the droplet. The actual profile is smoothed even further by fluctuations. Moreover, the density profile for a suspended droplet, as obtained numerically by J. W. Cahn and J. E. Hillard, J. Chem. Phys. JCPSA6 0021-9606 10.1063/1.1730447 31, 688 (1959) is slightly different from that for a flat interface. However, the difference is too subtle to notice.
-
(1959)
J. Chem. Phys.
, vol.31
, pp. 688
-
-
Cahn, J.W.1
Hillard, J.E.2
-
22
-
-
27344456221
-
-
JCPSA6 0021-9606 10.1063/1.2056543
-
M. A. Anisimov, A. F. Kostko, J. V. Sengers, and I. K. Yudin, J. Chem. Phys. JCPSA6 0021-9606 10.1063/1.2056543 123, 164901 (2005).
-
(2005)
J. Chem. Phys.
, vol.123
, pp. 164901
-
-
Anisimov, M.A.1
Kostko, A.F.2
Sengers, J.V.3
Yudin, I.K.4
-
23
-
-
33846361745
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.98.035702
-
M. A. Anisimov, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.98. 035702 98, 035702 (2007).
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 035702
-
-
Anisimov, M.A.1
-
24
-
-
42749099216
-
-
PLEEE8 1063-651X 10.1103/PhysRevE.67.061506
-
Y. C. Kim, M. E. Fisher, and G. Orkoulas, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.67.061506 67, 061506 (2003).
-
(2003)
Phys. Rev. e
, vol.67
, pp. 061506
-
-
Kim, Y.C.1
Fisher, M.E.2
Orkoulas, G.3
-
25
-
-
33749064125
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.97.025703
-
M. A. Anisimov and J. T. Wang, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.97.025703 97, 025703 (2006)
-
(2006)
Phys. Rev. Lett.
, vol.97
, pp. 025703
-
-
Anisimov, M.A.1
Wang, J.T.2
-
26
-
-
34347364476
-
-
PLEEE8 1063-651X 10.1103/PhysRevE.75.051107
-
J. T. Wang and M. A. Anisimov, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.75.051107 75, 051107 (2007).
-
(2007)
Phys. Rev. e
, vol.75
, pp. 051107
-
-
Wang, J.T.1
Anisimov, M.A.2
-
27
-
-
41549108070
-
-
PLEEE8 1063-651X 10.1103/PhysRevE.77.031127
-
J. T. Wang, C. A. Cerdeiriña, M. A. Anisimov, and J. V. Sengers, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.77.031127 77, 031127 (2008).
-
(2008)
Phys. Rev. e
, vol.77
, pp. 031127
-
-
Wang, J.T.1
Cerdeiriña, C.A.2
Anisimov, M.A.3
Sengers, J.V.4
-
28
-
-
47249140613
-
-
In Ref. the factor of 2 in the denominator of this relation was missed. This factor is related to the density-profile characteristic length scale properly defined as 2ξ.
-
In Ref. the factor of 2 in the denominator of this relation was missed. This factor is related to the density-profile characteristic length scale properly defined as 2ξ.
-
-
-
-
29
-
-
47249165880
-
-
Although thermodynamics allows any slope of the "diameter," it is negative for most single-component fluids.
-
Although thermodynamics allows any slope of the "diameter," it is negative for most single-component fluids.
-
-
-
-
30
-
-
43949169570
-
-
PHYADX 0378-4371 10.1016/0378-4371(93)90383-F
-
B. Widom, Physica A PHYADX 0378-4371 10.1016/0378-4371(93)90383-F 194, 532 (1993).
-
(1993)
Physica A
, vol.194
, pp. 532
-
-
Widom, B.1
-
33
-
-
0037279024
-
-
JSTPBS 0022-4715 10.1023/A:1022199516676
-
Y. C. Kim, M. A. Anisimov, J. V. Sengers, and E. Luijten, J. Stat. Phys. JSTPBS 0022-4715 10.1023/A:1022199516676 110, 591 (2003).
-
(2003)
J. Stat. Phys.
, vol.110
, pp. 591
-
-
Kim, Y.C.1
Anisimov, M.A.2
Sengers, J.V.3
Luijten, E.4
-
34
-
-
0032544560
-
-
The amplitude A 0,N=1 - is the critical amplitude of the heat capacity in the two-phase region of the solution, A 0-, in the limit N=1. It can be evaluated through the two-scale-factor universality: A 0+ ρc (ξ0+) 3 0.172, where A 0+ 0.523 A0- [JPHAC5 0305-4470 10.1088/0305-4470/31/37/002
-
The amplitude A 0,N=1 - is the critical amplitude of the heat capacity in the two-phase region of the solution, A 0-, in the limit N=1. It can be evaluated through the two-scale-factor universality: A 0+ ρc (ξ0+) 3 0.172, where A 0+ 0.523 A0- [M. E. Fisher and S.-Y. Zinn, J. Phys. A JPHAC5 0305-4470 10.1088/0305-4470/31/37/002 31, L629 (1998)]. For ρc (ξ 0,N=1 +) 3 1/2, A 0,N=1 - 0.7.
-
(1998)
J. Phys. A
, vol.31
, pp. 629
-
-
Fisher, M.E.1
Zinn, S.-Y.2
-
36
-
-
47249148638
-
-
Since ξ 0,N=1 - is determined by the range of interactions, while r0 is the random-walk step for an ideal polymer chain, these two microscopic lengths are, in general, different. For polystyrene-cyclohexane solutions, ξ 0,N=1 - 0.1nm, while r0 0.25nm.
-
Since ξ 0,N=1 - is determined by the range of interactions, while r0 is the random-walk step for an ideal polymer chain, these two microscopic lengths are, in general, different. For polystyrene-cyclohexane solutions, ξ 0,N=1 - 0.1nm, while r0 0.25nm.
-
-
-
-
37
-
-
0001269458
-
-
JCPSA6 0021-9606 10.1063/1.456186
-
I. Szleifer and B. Widom, J. Chem. Phys. JCPSA6 0021-9606 10.1063/1.456186 90, 7524 (1989).
-
(1989)
J. Chem. Phys.
, vol.90
, pp. 7524
-
-
Szleifer, I.1
Widom, B.2
|