-
2
-
-
0036002007
-
-
Park, W.; King, J. S.; Neff, C. W.; Liddell, C.; Summers, C. J. Phys. Status Solidi B 2002, 229, 949.
-
(2002)
Phys. Status Solidi B
, vol.229
, pp. 949
-
-
Park, W.1
King, J.S.2
Neff, C.W.3
Liddell, C.4
Summers, C.J.5
-
4
-
-
0037419647
-
-
Ma, C.; Li, D. M.; Wang, Z. L. Adv. Mater. 2003, 15, 228.
-
(2003)
Adv. Mater
, vol.15
, pp. 228
-
-
Ma, C.1
Li, D.M.2
Wang, Z.L.3
-
5
-
-
0037450301
-
-
Jiang, Y.; Meng, X. M.; Liu, J.; Xie, Z. Y.; Lee, C. S.; Lee, S. T. Adv. Mater. 2005, 15, 323.
-
(2005)
Adv. Mater
, vol.15
, pp. 323
-
-
Jiang, Y.1
Meng, X.M.2
Liu, J.3
Xie, Z.Y.4
Lee, C.S.5
Lee, S.T.6
-
6
-
-
3042856689
-
-
Zhao, Y.; Zhang, Y.; Zhu, H.; Hadjipanayis, G. C.; Xiao, J. Q. J. Am. Chem. Soc. 2004, 6, 6874.
-
(2004)
J. Am. Chem. Soc
, vol.6
, pp. 6874
-
-
Zhao, Y.1
Zhang, Y.2
Zhu, H.3
Hadjipanayis, G.C.4
Xiao, J.Q.5
-
7
-
-
0037052470
-
-
Wang, Y. W.; Zhang, L. D.; Liang, C. H.; Wang, G. Z.; Peng, X. S. Chem. Phys. Lett. 2002, 357, 314.
-
(2002)
Chem. Phys. Lett
, vol.357
, pp. 314
-
-
Wang, Y.W.1
Zhang, L.D.2
Liang, C.H.3
Wang, G.Z.4
Peng, X.S.5
-
8
-
-
4644262534
-
-
Xiong, Q. H.; Chen, G.; Acord, J. D.; Liu, X.; Zengel, J. J.; Gutierrez, H. R.; Redwing, J. M.; Lew Yan Voon, L. C.; Lassen, B.; Eklund, P. C. Nano Lett. 2004, 4, 1663.
-
(2004)
Nano Lett
, vol.4
, pp. 1663
-
-
Xiong, Q.H.1
Chen, G.2
Acord, J.D.3
Liu, X.4
Zengel, J.J.5
Gutierrez, H.R.6
Redwing, J.M.7
Lew Yan Voon, L.C.8
Lassen, B.9
Eklund, P.C.10
-
9
-
-
23944482187
-
-
Yin, L. W.; Bando, Y.; Zhan, J. H.; Li, M. S.; Bolberg, D. Adv. Mater. 2005, 17, 1972.
-
(2005)
Adv. Mater
, vol.17
, pp. 1972
-
-
Yin, L.W.1
Bando, Y.2
Zhan, J.H.3
Li, M.S.4
Bolberg, D.5
-
10
-
-
0037451467
-
-
Zhu, Y. C.; Bando, Y.; Xue, D. F. Appl. Phys. Lett. 2003, 82, 1769.
-
(2003)
Appl. Phys. Lett
, vol.82
, pp. 1769
-
-
Zhu, Y.C.1
Bando, Y.2
Xue, D.F.3
-
12
-
-
34547902915
-
-
Akiyama, T.; Sano, K.; Nakamura, K.; Ito, T. Jpn. J. Appl. Phys. 2007, 46, 1783.
-
(2007)
Jpn. J. Appl. Phys
, vol.46
, pp. 1783
-
-
Akiyama, T.1
Sano, K.2
Nakamura, K.3
Ito, T.4
-
15
-
-
0347111100
-
-
Matxain, J. M.; Fowler, J. E.; Ugalde, J. M. Phys. Rev. A 2000, 61, 053201.
-
(2000)
Phys. Rev. A
, vol.61
, pp. 053201
-
-
Matxain, J.M.1
Fowler, J.E.2
Ugalde, J.M.3
-
16
-
-
0141994513
-
-
Spano, E.; Hamad, S.; Catlow, C. R. A. J. Phys. Chem. B 2003, 107, 10337.
-
(2003)
J. Phys. Chem. B
, vol.107
, pp. 10337
-
-
Spano, E.1
Hamad, S.2
Catlow, C.R.A.3
-
17
-
-
14544301864
-
-
Hamad, S.; Catlow, C. R. A.; Spano, E.; Matxain, J. M.; Ugalde, J. M. J. Phys. Chem. B 2005, 109, 2703.
-
(2005)
J. Phys. Chem. B
, vol.109
, pp. 2703
-
-
Hamad, S.1
Catlow, C.R.A.2
Spano, E.3
Matxain, J.M.4
Ugalde, J.M.5
-
18
-
-
0033730628
-
-
Oku, T.; Hirano, T.; Kuno, M.; Kusunose, T.; Niihara, K.; Suganuma, Mat, K. Sci. Eng. B-Solid 2000, 74, 206.
-
(2000)
Sci. Eng. B-Solid
, vol.74
, pp. 206
-
-
Oku, T.1
Hirano, T.2
Kuno, M.3
Kusunose, T.4
Niihara, K.5
Suganuma, M.K.6
-
19
-
-
0142186227
-
-
Oku, T.; Nishiwaki, A.; Narita, I.; Gonda, M. Chem. Phys. Lett. 2003, 380, 620.
-
(2003)
Chem. Phys. Lett
, vol.380
, pp. 620
-
-
Oku, T.1
Nishiwaki, A.2
Narita, I.3
Gonda, M.4
-
20
-
-
23844513774
-
-
Pal, S.; Goswami, B.; Sarkar, P. J. Chem. Phys. 2005, 123, 044311.
-
(2005)
J. Chem. Phys
, vol.123
, pp. 044311
-
-
Pal, S.1
Goswami, B.2
Sarkar, P.3
-
21
-
-
33847342879
-
-
Pal, S.; Goswami, B.; Sarkar, P. J. Phys. Chem. C 2007, 111, 1556.
-
(2007)
J. Phys. Chem. C
, vol.111
, pp. 1556
-
-
Pal, S.1
Goswami, B.2
Sarkar, P.3
-
24
-
-
0037168360
-
-
Hamad, S.; Cristol, S.; Catlow, R. C. A. J. Phys. Chem. B 2002, 106, 11002.
-
(2002)
J. Phys. Chem. B
, vol.106
, pp. 11002
-
-
Hamad, S.1
Cristol, S.2
Catlow, R.C.A.3
-
26
-
-
0006838610
-
-
Sánchez-Portal, D.; Ordejón, P.; Artacho, E.; Soler, J. M. Int. J. Quantum Chem. 1997, 65, 453.
-
(1997)
Int. J. Quantum Chem
, vol.65
, pp. 453
-
-
Sánchez-Portal, D.1
Ordejón, P.2
Artacho, E.3
Soler, J.M.4
-
27
-
-
0037171091
-
-
Soler, J. M.; Artacho, E.; Gale, J. D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. J. Phys.: Condens. Matter 2002, 14, 2745.
-
(2002)
J. Phys.: Condens. Matter
, vol.14
, pp. 2745
-
-
Soler, J.M.1
Artacho, E.2
Gale, J.D.3
García, A.4
Junquera, J.5
Ordejón, P.6
Sánchez-Portal, D.7
-
30
-
-
4243943295
-
-
Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865;
-
(1996)
Phys. Rev. Lett
, vol.77
, pp. 3865
-
-
Perdew, J.P.1
Burke, K.2
Ernzerhof, M.3
-
31
-
-
47249110167
-
-
1997, 78, 1396.
-
(1997)
, vol.1396
, Issue.78
-
-
-
36
-
-
34548177337
-
-
Shen, X.; Allen, P. B.; Muckerman, J. T.; Davenport, J. W.; Zheng, J. C. Nano. Lett. 2007, 7, 2267.
-
(2007)
Nano. Lett
, vol.7
, pp. 2267
-
-
Shen, X.1
Allen, P.B.2
Muckerman, J.T.3
Davenport, J.W.4
Zheng, J.C.5
-
37
-
-
33144486742
-
-
Freeman, C. L.; Claeyssens, F.; Allan, N. L.; Harding, J. H. Phys. Rev. Lett. 2006, 96, 066102.
-
(2006)
Phys. Rev. Lett
, vol.96
, pp. 066102
-
-
Freeman, C.L.1
Claeyssens, F.2
Allan, N.L.3
Harding, J.H.4
-
38
-
-
33751560644
-
-
Xiang, H. J.; Yang, J. L.; Hou, J. G.; Zhu, Q. S. Appl. Phys. Lett. 2006, 89, 223111.
-
(2006)
Appl. Phys. Lett
, vol.89
, pp. 223111
-
-
Xiang, H.J.1
Yang, J.L.2
Hou, J.G.3
Zhu, Q.S.4
-
39
-
-
33947112916
-
-
Zhang, Z. X.; Yuan, H. J.; Liu, D. F.; Liu, L. F.; Shen, J.; Xiang, Y. J.; Ma, W. J.; Zhou, W. Y.; Xie, S. S. Nanotechnology 2007, 18, 145607.
-
(2007)
Nanotechnology
, vol.18
, pp. 145607
-
-
Zhang, Z.X.1
Yuan, H.J.2
Liu, D.F.3
Liu, L.F.4
Shen, J.5
Xiang, Y.J.6
Ma, W.J.7
Zhou, W.Y.8
Xie, S.S.9
-
40
-
-
47249101453
-
-
The V) and total surface (inner and outer) area (S) of a faceted ZnS-NT with a hexagonal prism morphology per supercell can be expressed as: V, 6 × √3/4 × (R out2, Rin2) × c, S, 6 × (Rout, Rin) × c, where c is the lattice constant along the axial direction, as denoted in the inset of Figure 2. Supporting the energy increase of the faceted ZnS-NT with respect to the w-ZnS crystal arises entirely from the surface energy, S × Esurf; the E from of the ZnS-NT in per ZnS unit can thus be evaluated using the equation Efrom, S × E surf, V × n, 4 × E surf)(√3 × n × Rout;, Rin, where n is the
-
in)) where n is the atomic density (ZnS units per volume).
-
-
-
-
41
-
-
47249150421
-
-
Generally, the lower the formation energy of a nanostructure, the the higher manufacturability. However, the synthesis of ZnS nanomaterials itself is rather complicated and should not depend entirely on energetics. In this work, we deduced the manufacturability of these ZnS nanomaterials simply on the basis on their formation energies. The kinetic components that are quite important for understanding the growth of nanomaterials were not taken into account
-
Generally, the lower the formation energy of a nanostructure, the the higher manufacturability. However, the synthesis of ZnS nanomaterials itself is rather complicated and should not depend entirely on energetics. In this work, we deduced the manufacturability of these ZnS nanomaterials simply on the basis on their formation energies. The kinetic components that are quite important for understanding the growth of nanomaterials were not taken into account.
-
-
-
-
43
-
-
33744471424
-
-
Zhao, M. W.; Xia, Y. Y.; Liu, X. D.; Tan, Z. Y.; Huang, B. D.; Song, C.; Mei, L. M. J. Phys. Chem. B 2006, 110, 8764.
-
(2006)
J. Phys. Chem. B
, vol.110
, pp. 8764
-
-
Zhao, M.W.1
Xia, Y.Y.2
Liu, X.D.3
Tan, Z.Y.4
Huang, B.D.5
Song, C.6
Mei, L.M.7
|