메뉴 건너뛰기




Volumn 21, Issue 9, 2008, Pages 928-933

An anti-periodic LaSalle oscillation theorem

Author keywords

Anti periodic solution; Kamke monotonicity; LaSalle theorem; Ordinary differential equation; Uniqueness and existence

Indexed keywords

BESSEL FUNCTIONS; DIFFERENTIAL EQUATIONS; DIFFERENTIATION (CALCULUS);

EID: 47049098387     PISSN: 08939659     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.aml.2007.10.004     Document Type: Article
Times cited : (25)

References (12)
  • 2
    • 0041706146 scopus 로고    scopus 로고
    • Anti-periodic boundary value problem for nonlinear first order ordinary differential equation
    • Franco D., Nieto J.J., and O'Regan D. Anti-periodic boundary value problem for nonlinear first order ordinary differential equation. Math. Inequal. Appl. 6 (2003) 477-485
    • (2003) Math. Inequal. Appl. , vol.6 , pp. 477-485
    • Franco, D.1    Nieto, J.J.2    O'Regan, D.3
  • 4
    • 0042309422 scopus 로고
    • Nonlinear third-order differential equations with anti-periodic boundary conditions and some optimal control problems
    • Aftabizadeh A.R., Huang Y.K., and Pavel N.H. Nonlinear third-order differential equations with anti-periodic boundary conditions and some optimal control problems. J. Math. Anal. Appl. 192 (1995) 266-293
    • (1995) J. Math. Anal. Appl. , vol.192 , pp. 266-293
    • Aftabizadeh, A.R.1    Huang, Y.K.2    Pavel, N.H.3
  • 5
    • 0343006710 scopus 로고    scopus 로고
    • Anti-periodic solutions to nonmonotone evolution equations with discontinuous nonlinearities
    • Aizicovici S., McKibben M., and Reich S. Anti-periodic solutions to nonmonotone evolution equations with discontinuous nonlinearities. Nonlinear Anal. 43 (2001) 233-251
    • (2001) Nonlinear Anal. , vol.43 , pp. 233-251
    • Aizicovici, S.1    McKibben, M.2    Reich, S.3
  • 6
    • 0034299862 scopus 로고    scopus 로고
    • First-order impulsive ordinary differential equations with anti-periodic and nonlinear boundary conditions
    • Franco D., and Nieto J.J. First-order impulsive ordinary differential equations with anti-periodic and nonlinear boundary conditions. Nonlinear Anal. 42 (2000) 163-173
    • (2000) Nonlinear Anal. , vol.42 , pp. 163-173
    • Franco, D.1    Nieto, J.J.2
  • 7
    • 0030589780 scopus 로고    scopus 로고
    • Existence of an anti-periodic solution for the quasilinear wave equation with viscosity
    • Nakao M. Existence of an anti-periodic solution for the quasilinear wave equation with viscosity. J. Math. Anal. Appl. 204 (1996) 754-764
    • (1996) J. Math. Anal. Appl. , vol.204 , pp. 754-764
    • Nakao, M.1
  • 8
    • 29544445179 scopus 로고    scopus 로고
    • Anti-periodic solution for semilinear evolution equations
    • Chen Y. Anti-periodic solution for semilinear evolution equations. J. Math. Anal. Appl. 315 (2006) 337-348
    • (2006) J. Math. Anal. Appl. , vol.315 , pp. 337-348
    • Chen, Y.1
  • 9
    • 0036545019 scopus 로고    scopus 로고
    • Isolating segments and anti-periodic solutions
    • Wójcik K. Isolating segments and anti-periodic solutions. Monatsh. Math. 135 (2002) 394-419
    • (2002) Monatsh. Math. , vol.135 , pp. 394-419
    • Wójcik, K.1
  • 10
    • 0001134447 scopus 로고    scopus 로고
    • The operator equation A X - X B = C, admissibility, and asymptotic behavior of differential equations
    • Phong V.Q., and Schuler E. The operator equation A X - X B = C, admissibility, and asymptotic behavior of differential equations. J. Differential Equations 145 (1998) 245-252
    • (1998) J. Differential Equations , vol.145 , pp. 245-252
    • Phong, V.Q.1    Schuler, E.2
  • 12
    • 0003462755 scopus 로고
    • Springer-Verlag
    • Yoshizawa T. Stability Theory and the Existence of Periodic solution and Almost Periodic Solutions. Appl. Math. Sci. vol. 14 (1975), Springer-Verlag
    • (1975) Appl. Math. Sci. , vol.14
    • Yoshizawa, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.