-
2
-
-
0003864328
-
-
McGraw-Hill, New York
-
Erdélyi A, Magnus W, Oberhettinger F, Tricomi FG (1953) Higher Transcendental Functions, Vol. I. McGraw-Hill, New York.
-
(1953)
Higher Transcendental Functions
, vol.1
-
-
Erdélyi, A.1
Magnus, W.2
Oberhettinger, F.3
Tricomi, F.G.4
-
4
-
-
33244471191
-
An extension of picard-lindelöff theorem to fractional differential equations
-
Hayek N, Trujillo JJ, Rivero M, Bonilla B, Moreno JC (1999) An extension of Picard-Lindelöff theorem to fractional differential equations, Appl. Anal. 70(3-4):347-361.
-
(1999)
Appl. Anal.
, vol.70
, Issue.3-4
, pp. 347-361
-
-
Hayek, N.1
Trujillo, J.J.2
Rivero, M.3
Bonilla, B.4
Moreno, J.C.5
-
5
-
-
0039293981
-
Sur la fonction de Mittag-Leffler et quelques-unes de ses généralisations
-
Humbert P, Agarwal RP (1953) Sur la fonction de Mittag-Leffler et quelques-unes de ses généralisations, Bull. Sci. Math. Ser. 2 77:180-185.
-
(1953)
Bull. Sci. Math. ser. 2
, vol.77
, pp. 180-185
-
-
Humbert, P.1
Agarwal, R.P.2
-
6
-
-
0039014069
-
Fractional integrals and derivatives, and differential equations of fractional order in weighted spaces of continuous functions
-
Kilbas AA, Bonilla B, Trujillo JJ (2000) Fractional integrals and derivatives, and differential equations of fractional order in weighted spaces of continuous functions, Dokl. Math. 2(62):222-226.
-
(2000)
Dokl. Math.
, vol.2
, Issue.62
, pp. 222-226
-
-
Kilbas, A.A.1
Bonilla, B.2
Trujillo, J.J.3
-
7
-
-
0012415112
-
Existence and uniqueness theorems for nonlinear fractional differential equations
-
Kilbas AA, Bonilla B, Trujillo JJ (2000) Existence and uniqueness theorems for nonlinear fractional differential equations, Demostratio Math. 3(33):583-602.
-
(2000)
Demostratio Math.
, vol.3
, Issue.33
, pp. 583-602
-
-
Kilbas, A.A.1
Bonilla, B.2
Trujillo, J.J.3
-
8
-
-
1642399880
-
On solution of fractional evolution equation
-
Kilbas AA, Pierantozzi T, Vázquez L, Trujillo JJ (2004) On solution of fractional evolution equation, J. Phys. A: Math Gen. 37:1-13.
-
(2004)
J. Phys. A: Math Gen.
, vol.37
, pp. 1-13
-
-
Kilbas, A.A.1
Pierantozzi, T.2
Vázquez, L.3
Trujillo, J.J.4
-
9
-
-
33244488577
-
Fractional differential equations: An emergent field in applied and mathematical sciences
-
(S. Samko, A. Lebre and A.F. dos Santos (eds.), Kluwer Acadedemic London)
-
Kilbas AA, Srivastava HM, Trujillo JJ (2003) Fractional differential equations: an emergent field in applied and mathematical sciences, in: Factorization, Singular Operators and Related Problems (S. Samko, A. Lebre and A.F. dos Santos (eds.), Kluwer Acadedemic London), pp. 151-174.
-
(2003)
Factorization, Singular Operators and Related Problems
, pp. 151-174
-
-
Kilbas, A.A.1
Srivastava, H.M.2
Trujillo, J.J.3
-
10
-
-
0002641421
-
The random walk's guide to anomalous diffusion: A fractional dynamic approach
-
Metzler R, Klafter J (2000) The random walk's guide to anomalous diffusion: A fractional dynamic approach, Phys. Rep. 1(339)1-77.
-
(2000)
Phys. Rep.
, vol.1
, Issue.339
, pp. 1-77
-
-
Metzler, R.1
Klafter, J.2
-
14
-
-
0003244044
-
Fractional differential equations
-
Academic Press, London
-
Podlubny I (1999) Fractional differential equations, in: Mathematics in Science and Engineering 198. Academic Press, London.
-
(1999)
Mathematics in Science and Engineering
, vol.198
-
-
Podlubny, I.1
-
15
-
-
23644455602
-
The development of fractional calculus: 1695-1900
-
Ross B (1977) The development of fractional calculus: 1695-1900, Hist. Math. 4:75-89.
-
(1977)
Hist. Math.
, vol.4
, pp. 75-89
-
-
Ross, B.1
-
16
-
-
0042494532
-
On a riemann-liouville generalized taylor's formula
-
Trujillo JJ, Rivero M, Bonilla B (1999) On a Riemann-Liouville generalized Taylor's formula, J. Math Anal. Appl. (1)(231):255-265.
-
(1999)
J. Math Anal. Appl.
, vol.231
, Issue.1
, pp. 255-265
-
-
Trujillo, J.J.1
Rivero, M.2
Bonilla, B.3
-
18
-
-
0001553919
-
Fractional diffusion and wave equations
-
Schneider WR, Wyss W (1989) Fractional diffusion and wave equations, J. Math. Phys. 30:134-144.
-
(1989)
J. Math. Phys.
, vol.30
, pp. 134-144
-
-
Schneider, W.R.1
Wyss, W.2
|