-
1
-
-
47049090656
-
-
G.L Eyink, title unknown, these Proceedings
-
G.L Eyink, title unknown, these Proceedings
-
-
-
-
2
-
-
0020618852
-
Small-scale structure of the Taylor-Green vortex
-
Brachet M.E., Meiron D.I., Orszag S.A., Nickel B.G., Morf R.H., and Frisch U. Small-scale structure of the Taylor-Green vortex. J. Fluid Mech. 130 (1983) 411-452
-
(1983)
J. Fluid Mech.
, vol.130
, pp. 411-452
-
-
Brachet, M.E.1
Meiron, D.I.2
Orszag, S.A.3
Nickel, B.G.4
Morf, R.H.5
Frisch, U.6
-
3
-
-
0027949877
-
Direct numerical simulation of transition to turbulence from a high-symmetry initial condition
-
Boratav O.N., and Pelz R.B. Direct numerical simulation of transition to turbulence from a high-symmetry initial condition. Phys. Fluids 6 (1994) 2757-2784
-
(1994)
Phys. Fluids
, vol.6
, pp. 2757-2784
-
-
Boratav, O.N.1
Pelz, R.B.2
-
4
-
-
34250136481
-
Remarks on the breakdown of smooth solutions for the 3D Euler equations
-
Beale J.T., Kato T., and Majda A. Remarks on the breakdown of smooth solutions for the 3D Euler equations. Comm. Math. Phys. 94 (1984) 61-66
-
(1984)
Comm. Math. Phys.
, vol.94
, pp. 61-66
-
-
Beale, J.T.1
Kato, T.2
Majda, A.3
-
5
-
-
0035580860
-
An Eulerian-Lagrangian approach for incompressible fluids: Local theory
-
Constantin P. An Eulerian-Lagrangian approach for incompressible fluids: Local theory. J. Amer. Math. Soc. 14 (2001) 263-278
-
(2001)
J. Amer. Math. Soc.
, vol.14
, pp. 263-278
-
-
Constantin, P.1
-
6
-
-
0001212876
-
Note on loss of regularity for solutions of the 3-D incompressible and related equations
-
Constantin P. Note on loss of regularity for solutions of the 3-D incompressible and related equations. Comm. Math. Phys. 104 (1986) 311-326
-
(1986)
Comm. Math. Phys.
, vol.104
, pp. 311-326
-
-
Constantin, P.1
-
7
-
-
30344476134
-
Effective dissipation and turbulence in spectrally truncated Euler flows
-
Cichowlas C., Bonaiti P., Debbasch F., and Brachet M. Effective dissipation and turbulence in spectrally truncated Euler flows. Phys. Rev. Lett. 95 (2005) 264502
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 264502
-
-
Cichowlas, C.1
Bonaiti, P.2
Debbasch, F.3
Brachet, M.4
-
8
-
-
1442282437
-
Warm cascades and anomalous scaling in a diffusion model of turbulence
-
Connaughton C., and Nazarenko S. Warm cascades and anomalous scaling in a diffusion model of turbulence. Phys. Rev. Lett. 92 (2004) 044501
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 044501
-
-
Connaughton, C.1
Nazarenko, S.2
-
9
-
-
18844420865
-
Evolution of complex singularities in Kida-Pelz and Taylor-Green inviscid flows
-
Cichowlas C., and Brachet M.-E. Evolution of complex singularities in Kida-Pelz and Taylor-Green inviscid flows. Fluid Dyn. Res. 36 (2005) 239-248
-
(2005)
Fluid Dyn. Res.
, vol.36
, pp. 239-248
-
-
Cichowlas, C.1
Brachet, M.-E.2
-
10
-
-
0031239138
-
Decaying Kolmogorov turbulence in a model of superflow
-
Nore C., Abid M., and Brachet M.E. Decaying Kolmogorov turbulence in a model of superflow. Phys. Fluids 9 (1997) 2644-2669
-
(1997)
Phys. Fluids
, vol.9
, pp. 2644-2669
-
-
Nore, C.1
Abid, M.2
Brachet, M.E.3
-
11
-
-
84941374594
-
Uber eine allgemeine Transformation der hydrodynamischen Gleichungen
-
(in German)
-
Clebsch A. Uber eine allgemeine Transformation der hydrodynamischen Gleichungen. J. Reine Angew. Math. 54 (1857) 293-313 (in German)
-
(1857)
J. Reine Angew. Math.
, vol.54
, pp. 293-313
-
-
Clebsch, A.1
-
12
-
-
84908503035
-
Uber die Integration der hydrodynamischen Gleichungen
-
(in German)
-
Clebsch A. Uber die Integration der hydrodynamischen Gleichungen. J. Reine Angew. Math. 56 (1859) 1-10 (in German)
-
(1859)
J. Reine Angew. Math.
, vol.56
, pp. 1-10
-
-
Clebsch, A.1
-
13
-
-
47049109180
-
-
W.M. Hicks, Report on Recent Progress in Hydrodynamics-Part I, British Association, 1881
-
W.M. Hicks, Report on Recent Progress in Hydrodynamics-Part I, British Association, 1881
-
-
-
-
14
-
-
84943471869
-
Uber integrale der hydrodynamischen Gleichungen, welche den wirbelbewegungen entsprechen
-
(in German)
-
Helmholtz H. Uber integrale der hydrodynamischen Gleichungen, welche den wirbelbewegungen entsprechen. J. Reine Angew. Math. 55 (1858) 25-55 (in German)
-
(1858)
J. Reine Angew. Math.
, vol.55
, pp. 25-55
-
-
Helmholtz, H.1
-
15
-
-
47049084832
-
Sur les équations de h'hydrodynamique. Commentaire a un mémoire de Clebsch
-
(in French)
-
Duhem P. Sur les équations de h'hydrodynamique. Commentaire a un mémoire de Clebsch. Ann. Fac. Sci. Univ. Toulouse 3 (1901) 253-279 (in French)
-
(1901)
Ann. Fac. Sci. Univ. Toulouse
, vol.3
, pp. 253-279
-
-
Duhem, P.1
-
16
-
-
0000286944
-
Mathematical principles of classical fluid mechanics
-
Flügge S., and Truesdell C. (Eds), Springer, Berlin
-
Serrin J. Mathematical principles of classical fluid mechanics. In: Flügge S., and Truesdell C. (Eds). Handbuch der Physik (1959), Springer, Berlin 125-263
-
(1959)
Handbuch der Physik
, pp. 125-263
-
-
Serrin, J.1
-
17
-
-
0021201971
-
Impulse, flow force and variational principles
-
Benjamin T.B. Impulse, flow force and variational principles. IMA J. Appl. Math. 32 (1984) 3-68
-
(1984)
IMA J. Appl. Math.
, vol.32
, pp. 3-68
-
-
Benjamin, T.B.1
-
18
-
-
33847105941
-
Gauge principle and variational formulation for ideal fluids with reference to translational symmetry
-
Kambe T. Gauge principle and variational formulation for ideal fluids with reference to translational symmetry. Fluid Dyn. Res. 39 (2007) 98-120
-
(2007)
Fluid Dyn. Res.
, vol.39
, pp. 98-120
-
-
Kambe, T.1
-
19
-
-
5844267016
-
Two-and-a-half-dimensional magnetohydrodynamic turbulence
-
Montgomery D., and Turner L. Two-and-a-half-dimensional magnetohydrodynamic turbulence. Phys. Fluids 25 (1982) 345-349
-
(1982)
Phys. Fluids
, vol.25
, pp. 345-349
-
-
Montgomery, D.1
Turner, L.2
-
20
-
-
0000863080
-
Oscillations and concentrations in weak solutions of the incompressible fluid equations
-
Diperna R.J., and Majda A.J. Oscillations and concentrations in weak solutions of the incompressible fluid equations. Comm. Math. Phys. 108 (1987) 667-689
-
(1987)
Comm. Math. Phys.
, vol.108
, pp. 667-689
-
-
Diperna, R.J.1
Majda, A.J.2
-
21
-
-
77956834067
-
A mathematical model illustrating the theory of turbulence
-
Burgers J.M. A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1 (1948) 171-199
-
(1948)
Adv. Appl. Mech.
, vol.1
, pp. 171-199
-
-
Burgers, J.M.1
-
22
-
-
47049112515
-
-
This expression is naive as it involves dual limits; small viscosity and large time, which are not interchangeable in general. We will be more specific, where necessary
-
This expression is naive as it involves dual limits; small viscosity and large time, which are not interchangeable in general. We will be more specific, where necessary
-
-
-
-
23
-
-
47049103873
-
-
2 at a higher end of wavenumber) [7,8]
-
2 at a higher end of wavenumber) [7,8]
-
-
-
-
24
-
-
47049084831
-
-
2 + ∇ ψ
-
2 + ∇ ψ
-
-
-
-
25
-
-
47049102098
-
-
For n pairs of Clebsch potentials plus a solenoidal projector
-
For n pairs of Clebsch potentials plus a solenoidal projector
-
-
-
-
26
-
-
47049113261
-
-
For such a expression to be valid globally, we need a Frobenius condition of integrability. Thus, actually it restricts us to a very special class of flows
-
For such a expression to be valid globally, we need a Frobenius condition of integrability. Thus, actually it restricts us to a very special class of flows
-
-
-
|