메뉴 건너뛰기




Volumn 9, Issue , 2008, Pages

Using the information embedded in the testing sample to break the limits caused by the small sample size in microarray-based classification

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION ALGORITHM; CLASSIFICATION RESULTS; MOLECULAR VARIATION; NUMBER OF SAMPLES; SMALL SAMPLE SIZE; STATISTICAL INFORMATION; STATISTICAL TECHNIQUES; TUMOR CLASSIFICATION;

EID: 46949104413     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-9-280     Document Type: Article
Times cited : (5)

References (35)
  • 3
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissue probe by oligonucleotide array
    • 21986 10359783 10.1073/pnas.96.12.6745
    • Alon U Barkai N Notterman D Gish K Ybarra S Mack D Levine A Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissue probe by oligonucleotide array Proc Natl Acad Sci USA 1999, 96:6745-6750. 21986 10359783 10.1073/pnas.96.12.6745
    • (1999) Proc Natl Acad Sci USA , vol.96 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.3    Gish, K.4    Ybarra, S.5    Mack, D.6    Levine, A.7
  • 4
    • 0035991757 scopus 로고    scopus 로고
    • A paradigm for class prediction using gene expression profiles
    • 10.1089/106652702760138592 12162889
    • Radmacher M Mcshane L Simon R A paradigm for class prediction using gene expression profiles J Comput Biol 2002, 9:505-511. 10.1089/ 106652702760138592 12162889
    • (2002) J Comput Biol , vol.9 , pp. 505-511
    • Radmacher, M.1    Mcshane, L.2    Simon, R.3
  • 7
    • 33947684306 scopus 로고    scopus 로고
    • Importance of data structure in comparing two dimension reduction methods for classification of microarray gene expression data
    • 1831790 17355634 10.1186/1471-2105-8-90
    • Truntzer C Mercier C Esteve J Gautier C Roy P Importance of data structure in comparing two dimension reduction methods for classification of microarray gene expression data BMC Bioinformatics 2007, 8:90. 1831790 17355634 10.1186/1471-2105-8-90
    • (2007) BMC Bioinformatics , vol.8 , pp. 90
    • Truntzer, C.1    Mercier, C.2    Esteve, J.3    Gautier, C.4    Roy, P.5
  • 8
    • 1942438016 scopus 로고    scopus 로고
    • Opinion - Rules of evidence for cancer molecular-marker discovery and validation
    • 10.1038/nrc1322 15057290
    • Ransohoff D Opinion - rules of evidence for cancer molecular-marker discovery and validation Nat Rev Cancer 2004, 4:309-314. 10.1038/nrc1322 15057290
    • (2004) Nat Rev Cancer , vol.4 , pp. 309-314
    • Ransohoff, D.1
  • 10
    • 33748419485 scopus 로고    scopus 로고
    • Microarray data analysis: From disarray to consolidation and consensus
    • 10.1038/ncponc0587 16955089
    • Abdullah-Sayani A Bueno-de Mesquita J Vijver van de M Microarray data analysis: From disarray to consolidation and consensus Nature Clinical Practice Oncology 2006, 3(9):501-516. 10.1038/ncponc0587 16955089
    • (2006) Nature Clinical Practice Oncology , vol.3 , Issue.9 , pp. 501-516
    • Abdullah-Sayani, A.1    Bueno-de Mesquita, J.2    Vijver, M.3
  • 11
    • 13444249852 scopus 로고    scopus 로고
    • Prediction of cancer outcome with microarrays: A multiple random validation strategy
    • 10.1016/S0140-6736(05)17866-0 15705458
    • S Michiels SK Hill C Prediction of cancer outcome with microarrays: A multiple random validation strategy Lancet 2005, 365:488-492. 10.1016/ S0140-6736(05)17866-0 15705458
    • (2005) Lancet , vol.365 , pp. 488-492
    • S Michiels, S.K.1    Hill, C.2
  • 13
    • 0001474381 scopus 로고
    • The statistical utilization of multiple measurements
    • Fisher R The statistical utilization of multiple measurements Annals of Eugenics 1938, 8:376-386.
    • (1938) Annals of Eugenics , vol.8 , pp. 376-386
    • Fisher, R.1
  • 14
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discriminant methods for the classification of tumor using gene expression data
    • 10.1198/016214502753479248
    • Dudoit S Fridlyand J Speed T Comparison of discriminant methods for the classification of tumor using gene expression data J Am Stat Assoc 2002, 97:77-87. 10.1198/016214502753479248
    • (2002) J Am Stat Assoc , vol.97 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.3
  • 15
    • 33645825183 scopus 로고    scopus 로고
    • Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer
    • 1458674 16585533 10.1073/pnas.0601231103
    • Ein-Dor L Zuk O Domany E Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer Proc Natl Acad Sci USA 2006, 103:5923-5928. 1458674 16585533 10.1073/pnas.0601231103
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 5923-5928
    • Ein-Dor, L.1    Zuk, O.2    Domany, E.3
  • 16
    • 17544364191 scopus 로고    scopus 로고
    • Optimal number of features as a function of sample size for various classification rules
    • 10.1093/bioinformatics/bti171 15572470
    • Hua J Xiong Z Lowey J Suh E Dougherty E Optimal number of features as a function of sample size for various classification rules Bioinformatics 2005, 21:1509-1515. 10.1093/bioinformatics/bti171 15572470
    • (2005) Bioinformatics , vol.21 , pp. 1509-1515
    • Hua, J.1    Xiong, Z.2    Lowey, J.3    Suh, E.4    Dougherty, E.5
  • 17
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • 10.1023/A:1012487302797
    • Guyon I Weston J Barnhill S Gene selection for cancer classification using support vector machines Mach Learn 2002, 46:389-422. 10.1023/ A:1012487302797
    • (2002) Mach Learn , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3
  • 18
    • 0034894874 scopus 로고    scopus 로고
    • Feature (gene) selection in gene expression-based tumor classfication
    • 10.1006/mgme.2001.3193 11461191
    • Xiong M Li W Zhao J Jin L Boerwinkle E Feature (gene) selection in gene expression-based tumor classfication Mol Genet Metab 2001, 73:239-247. 10.1006/mgme.2001.3193 11461191
    • (2001) Mol Genet Metab , vol.73 , pp. 239-247
    • Xiong, M.1    Li, W.2    Zhao, J.3    Jin, L.4    Boerwinkle, E.5
  • 19
    • 0242361278 scopus 로고    scopus 로고
    • Predictive ability of dna microarray for cancer outcome and correlation: An empirical assessment
    • 10.1016/S0140-6736(03)14686-7 14602436
    • Ntzani E Loannidis J Predictive ability of dna microarray for cancer outcome and correlation: An empirical assessment Lancet 2003, 362:1439-1444. 10.1016/S0140-6736(03)14686-7 14602436
    • (2003) Lancet , vol.362 , pp. 1439-1444
    • Ntzani, E.1    Loannidis, J.2
  • 20
    • 31444456482 scopus 로고    scopus 로고
    • Inferential literacy for experimenal high-throughput biology
    • 10.1016/j.tig.2005.12.001 16377025
    • Miron M Nadon R Inferential literacy for experimenal high-throughput biology Trends Genet 2006, 22:84-89. 10.1016/j.tig.2005.12.001 16377025
    • (2006) Trends Genet , vol.22 , pp. 84-89
    • Miron, M.1    Nadon, R.2
  • 24
    • 1842420581 scopus 로고    scopus 로고
    • General conditions for predictivity in learning theory
    • 10.1038/nature02341 15042089
    • Poggio T Rifkin R Mukherjee S Niyogi P General conditions for predictivity in learning theory Nature 2004, 428:419-422. 10.1038/ nature02341 15042089
    • (2004) Nature , vol.428 , pp. 419-422
    • Poggio, T.1    Rifkin, R.2    Mukherjee, S.3    Niyogi, P.4
  • 25
    • 30144436546 scopus 로고    scopus 로고
    • Where are linear feature extraction methods applicable?
    • 10.1109/TPAMI.2005.250 16358412
    • Martinez A Zhu M Where are linear feature extraction methods applicable? IEEE Trans Pattern Anal Mach Intell 2005, 27(12):1934-1944. 10.1109/ TPAMI.2005.250 16358412
    • (2005) IEEE Trans Pattern Anal Mach Intell , vol.27 , Issue.12 , pp. 1934-1944
    • Martinez, A.1    Zhu, M.2
  • 26
    • 33748159278 scopus 로고    scopus 로고
    • Subclass Discriminant Analysis
    • 10.1109/TPAMI.2006.172 16886863
    • Zhu M Martinez A Subclass Discriminant Analysis IEEE Trans Pattern Anal Mach Intell 2006, 28(8):1274-1286. 10.1109/TPAMI.2006.172 16886863
    • (2006) IEEE Trans Pattern Anal Mach Intell , vol.28 , Issue.8 , pp. 1274-1286
    • Zhu, M.1    Martinez, A.2
  • 28
    • 29244448340 scopus 로고    scopus 로고
    • Microarray data analysis: From disarray to consolidation and consensus
    • 10.1038/nrg1749 16369572
    • Allison D Cui X Page G Sabripour M Microarray data analysis: From disarray to consolidation and consensus Nat Rev Genet 2006, 5:55-65. 10.1038/nrg1749 16369572
    • (2006) Nat Rev Genet , vol.5 , pp. 55-65
    • Allison, D.1    Cui, X.2    Page, G.3    Sabripour, M.4
  • 30
    • 46049085599 scopus 로고    scopus 로고
    • Variable selection for large p small n regression models with incomplete data: Mapping QTL with epistases
    • Zhang M Zhang D Wells M Variable selection for large p small n regression models with incomplete data: Mapping QTL with epistases BMC Bioinformatics 2008, 9-25.
    • (2008) BMC Bioinformatics , vol.9
    • Zhang, M.1    Zhang, D.2    Wells, M.3
  • 31
    • 34547688867 scopus 로고    scopus 로고
    • Spherical-Homoscedastic Distributions: The equivalency of spherical and Normal distributions in classification
    • Hamsici O Martinez A Spherical-Homoscedastic Distributions: The equivalency of spherical and Normal distributions in classification J Mach Learn Res 2007, 8:1583-1623.
    • (2007) J Mach Learn Res , vol.8 , pp. 1583-1623
    • Hamsici, O.1    Martinez, A.2
  • 32
    • 34548490763 scopus 로고    scopus 로고
    • Improved classification accuracy in 1-and 2-dimensional NMR metabolomics data using the variance stabilising generalised logarithm transformation
    • 1965488 17605789 10.1186/1471-2105-8-234
    • Parsons H Ludwig C Gunther U Viant M Improved classification accuracy in 1-and 2-dimensional NMR metabolomics data using the variance stabilising generalised logarithm transformation BMC Bioinformatics 2007, 8:234. 1965488 17605789 10.1186/1471-2105-8-234
    • (2007) BMC Bioinformatics , vol.8 , pp. 234
    • Parsons, H.1    Ludwig, C.2    Gunther, U.3    Viant, M.4
  • 33
    • 33644834789 scopus 로고    scopus 로고
    • Common markers of proliferation
    • 10.1038/nrc1802 16491069
    • Whitfield M George L Grant G Perou C Common markers of proliferation Nat Rev Cancer 2006, 6:99-106. 10.1038/nrc1802 16491069
    • (2006) Nat Rev Cancer , vol.6 , pp. 99-106
    • Whitfield, M.1    George, L.2    Grant, G.3    Perou, C.4
  • 34
    • 3042694117 scopus 로고    scopus 로고
    • Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression
    • 438973 15184677 10.1073/pnas.0401994101
    • Rhodes D Yu J Shanker K Deshpande N Varambally R Ghosh D Barrette T Pandey A Chinnaiyan A Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression Proc Natl Acad Sci USA 2004, 101:9309-9314. 438973 15184677 10.1073/pnas.0401994101
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 9309-9314
    • Rhodes, D.1    Yu, J.2    Shanker, K.3    Deshpande, N.4    Varambally, R.5    Ghosh, D.6    Barrette, T.7    Pandey, A.8    Chinnaiyan, A.9


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.