메뉴 건너뛰기




Volumn 9, Issue 2, 2008, Pages

Inequalities on the Lambert W function and hyperpower function

Author keywords

Hyperpower function; Inequality; Lambert W function; Special function

Indexed keywords


EID: 46849093022     PISSN: None     EISSN: 14435756     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (200)

References (6)
  • 1
    • 46849094260 scopus 로고    scopus 로고
    • M. ABRAMOWITZ AND I.A. STEGUN, Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, Dover Publications, 1972. [ONLINE: http://www.convertit.com/Go/ConvertIt/Reference/AMS55.asp].
    • M. ABRAMOWITZ AND I.A. STEGUN, Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, Dover Publications, 1972. [ONLINE: http://www.convertit.com/Go/ConvertIt/Reference/AMS55.asp].
  • 3
    • 0030706769 scopus 로고    scopus 로고
    • R.M. CORLESS, D.J. JEFFREY AND D.E. KNUTH, A sequence of series for the Lambert W function, Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation (Kihei, HI), 197-204 (electronic), ACM, New York, 1997.
    • R.M. CORLESS, D.J. JEFFREY AND D.E. KNUTH, A sequence of series for the Lambert W function, Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation (Kihei, HI), 197-204 (electronic), ACM, New York, 1997.
  • 4
    • 46849110539 scopus 로고    scopus 로고
    • I. GALIDAKIS AND E.W. WEISSTEIN, Power Tower. From MathWorld-A Wolfram Web Resource. [ONLINE: http://mathword.wolfram.com/ PowerTower.html].
    • I. GALIDAKIS AND E.W. WEISSTEIN, "Power Tower." From MathWorld-A Wolfram Web Resource. [ONLINE: http://mathword.wolfram.com/ PowerTower.html].
  • 5
    • 84875756051 scopus 로고    scopus 로고
    • Approximation of the Lambert W function, RGMIA Research Report
    • Art. 12
    • M. HASSANI, Approximation of the Lambert W function, RGMIA Research Report Collection, 8(4) (2005), Art. 12.
    • (2005) Collection , vol.8 , Issue.4
    • HASSANI, M.1
  • 6
    • 46849094476 scopus 로고    scopus 로고
    • E.W. WEISSTEIN, Lambert W-Function, from MathWorld-A Wolfram Web Resource. [ONLINE: http://mathworld.wolfram.com/LambertW-Function.html].
    • E.W. WEISSTEIN, Lambert W-Function, from MathWorld-A Wolfram Web Resource. [ONLINE: http://mathworld.wolfram.com/LambertW-Function.html].


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.