-
1
-
-
2442662675
-
Global stability for a class of delay differential equations
-
Foryś U. Global stability for a class of delay differential equations. Applied Mathematics Letters 2004; 17(5): 581-584.
-
(2004)
Applied Mathematics Letters
, vol.17
, Issue.5
, pp. 581-584
-
-
Foryś, U.1
-
4
-
-
0001426451
-
Stable positive periodic solutions of the time-dependent logistic equation under possible hereditary influences
-
Cushing JM. Stable positive periodic solutions of the time-dependent logistic equation under possible hereditary influences. Journal of Mathematical Analysis and Applications 1977; 60(3):747-754.
-
(1977)
Journal of Mathematical Analysis and Applications
, vol.60
, Issue.3
, pp. 747-754
-
-
Cushing, J.M.1
-
5
-
-
46749096312
-
-
Gopalsamy K. Nonoscillation in a delay-logistic equation. Quarterly of Applied Mathematics 1985; 43(2):189-197.
-
Gopalsamy K. Nonoscillation in a delay-logistic equation. Quarterly of Applied Mathematics 1985; 43(2):189-197.
-
-
-
-
6
-
-
0038374493
-
Oscillations in a delay-logistic equation
-
Gopalsamy K. Oscillations in a delay-logistic equation. Quarterly of Applied Mathematics 1986; 44(3):447-461.
-
(1986)
Quarterly of Applied Mathematics
, vol.44
, Issue.3
, pp. 447-461
-
-
Gopalsamy, K.1
-
7
-
-
0347435757
-
Global attractivity and oscillations in an almost periodic delay logistic equation
-
Gopalsamy K, He XZ, Wen LZ. Global attractivity and oscillations in an almost periodic delay logistic equation. Nonlinear Times Digest 1994; 1(1):9-23.
-
(1994)
Nonlinear Times Digest
, vol.1
, Issue.1
, pp. 9-23
-
-
Gopalsamy, K.1
He, X.Z.2
Wen, L.Z.3
-
8
-
-
0001828205
-
Global attractivity and oscillations in a periodic delay-logistic equation
-
Zhang BG, Gopalsamy K. Global attractivity and oscillations in a periodic delay-logistic equation. Journal of Mathematical Analysis and Applications 1990; 150(1):274-283.
-
(1990)
Journal of Mathematical Analysis and Applications
, vol.150
, Issue.1
, pp. 274-283
-
-
Zhang, B.G.1
Gopalsamy, K.2
-
10
-
-
0021858751
-
Zur praxis der anpassung der logistichen function an das Wachstum exprerimenteller tumoren.
-
Krug H, Taubert G. Zur praxis der anpassung der logistichen function an das Wachstum exprerimenteller tumoren. Archiv fur Geschwulstforsch 1985; 55:235-244.
-
(1985)
Archiv fur Geschwulstforsch
, vol.55
, pp. 235-244
-
-
Krug, H.1
Taubert, G.2
-
11
-
-
0039403613
-
Reconstruction models for the Ehrlich ascites tumor for the mouse
-
eds, Wuertz: Winnipeg, Canada
-
Schuster R, Schuster H. Reconstruction models for the Ehrlich ascites tumor for the mouse. In Mathematical Population Dynamics, vol. 2, Arino O, Axelrod D, Kimmel M (eds). Wuertz: Winnipeg, Canada, 1995; 335-348.
-
(1995)
Mathematical Population Dynamics
, vol.2
, pp. 335-348
-
-
Schuster, R.1
Schuster, H.2
-
12
-
-
0001119103
-
Notice sur la loi que population suit dans son accroissement.
-
Verhulst PF. Notice sur la loi que population suit dans son accroissement. Correspondance Mathematique et Physique 1838; 10:113-121.
-
(1838)
Correspondance Mathematique et Physique
, vol.10
, pp. 113-121
-
-
Verhulst, P.F.1
-
13
-
-
0003293418
-
On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies
-
Gompertz B. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philosophical Transactions of the Royal Society of London 1825; 115:513-585.
-
(1825)
Philosophical Transactions of the Royal Society of London
, vol.115
, pp. 513-585
-
-
Gompertz, B.1
-
14
-
-
0021962110
-
Gompertzian growth as a consequence of tumor heterogeneity
-
Kendal WS. Gompertzian growth as a consequence of tumor heterogeneity. Mathematical Biosciences 1985; 73(1):103-107.
-
(1985)
Mathematical Biosciences
, vol.73
, Issue.1
, pp. 103-107
-
-
Kendal, W.S.1
-
15
-
-
84966166281
-
Dynamics of tumour growth
-
Laird AK. Dynamics of tumour growth. British Journal of Cancer 1964; 18:490-502.
-
(1964)
British Journal of Cancer
, vol.18
, pp. 490-502
-
-
Laird, A.K.1
-
16
-
-
0001315130
-
Dynamics of tumour growth: Comparison of growth rates and extrapolation of growth curve to one cell
-
Laird AK. Dynamics of tumour growth: comparison of growth rates and extrapolation of growth curve to one cell. British Journal of Cancer 1965; 19:278-291.
-
(1965)
British Journal of Cancer
, vol.19
, pp. 278-291
-
-
Laird, A.K.1
-
17
-
-
24644489192
-
A principle of fractal-stochastic dualism and Gompertzian dynamics of growth and self-organization
-
Waliszewski P. A principle of fractal-stochastic dualism and Gompertzian dynamics of growth and self-organization. BioSystems 2005; 82(1):61-73.
-
(2005)
BioSystems
, vol.82
, Issue.1
, pp. 61-73
-
-
Waliszewski, P.1
-
18
-
-
0037408903
-
The Gompertzian curve reveals fractal properties of tumor growth
-
Waliszewski P, Konarski J. The Gompertzian curve reveals fractal properties of tumor growth. Chaos, Solitons and Fractals 2003; 16(5):665-674.
-
(2003)
Chaos, Solitons and Fractals
, vol.16
, Issue.5
, pp. 665-674
-
-
Waliszewski, P.1
Konarski, J.2
-
19
-
-
0030822132
-
The effect of time delay on the dynamics of avascular tumour growth
-
Byrne HM. The effect of time delay on the dynamics of avascular tumour growth. Mathematical Biosciences 1997; 144:83-117.
-
(1997)
Mathematical Biosciences
, vol.144
, pp. 83-117
-
-
Byrne, H.M.1
-
20
-
-
0000128125
-
Models for the growth of solid tumour by diffusion
-
Greenspan HP. Models for the growth of solid tumour by diffusion. Studies in Applied Mathematics 1972; 52:317-340.
-
(1972)
Studies in Applied Mathematics
, vol.52
, pp. 317-340
-
-
Greenspan, H.P.1
-
21
-
-
0016373920
-
On the self inhibited growth of cell cultures
-
Greenspan HP. On the self inhibited growth of cell cultures. Growth 1974; 38:81-95.
-
(1974)
Growth
, vol.38
, pp. 81-95
-
-
Greenspan, H.P.1
-
22
-
-
0017198676
-
On the growth and stability of cell cultures and solid tumors
-
Greenspan HP. On the growth and stability of cell cultures and solid tumors. Journal of Theoretical Biology 1976; 56:229-242.
-
(1976)
Journal of Theoretical Biology
, vol.56
, pp. 229-242
-
-
Greenspan, H.P.1
-
23
-
-
37149037748
-
Three types of simple DDE's describing tumour growth
-
Bodnar M, Foryś U. Three types of simple DDE's describing tumour growth. Journal of Biological Systems 2007; 15(4):1-19.
-
(2007)
Journal of Biological Systems
, vol.15
, Issue.4
, pp. 1-19
-
-
Bodnar, M.1
Foryś, U.2
-
26
-
-
33845594571
-
Existence, uniqueness, stochastic persistence and global stability of positive solutions of the logistic equation with random perturbation
-
Ji C, Jiang D, Shi N, O'Regan D. Existence, uniqueness, stochastic persistence and global stability of positive solutions of the logistic equation with random perturbation. Mathematical Methods in the Applied Sciences 2007; 30(1):77-89.
-
(2007)
Mathematical Methods in the Applied Sciences
, vol.30
, Issue.1
, pp. 77-89
-
-
Ji, C.1
Jiang, D.2
Shi, N.3
O'Regan, D.4
-
27
-
-
0346347974
-
Survival of the fittest in a generalized logistic model
-
Ackleh AS, Marshall DE, Heatherly HE, Fitzpatrick BG. Survival of the fittest in a generalized logistic model. Mathematical Models and Methods in Applied Sciences 1999; 9(9):1379-1391.
-
(1999)
Mathematical Models and Methods in Applied Sciences
, vol.9
, Issue.9
, pp. 1379-1391
-
-
Ackleh, A.S.1
Marshall, D.E.2
Heatherly, H.E.3
Fitzpatrick, B.G.4
-
28
-
-
34248645088
-
-
Frank TD. Multivariate Markov process for stochastic systems with delay: application to stochastic Gompertz model with delay. Physical Review E(3) 2002; 66(1):011814, 8.
-
Frank TD. Multivariate Markov process for stochastic systems with delay: application to stochastic Gompertz model with delay. Physical Review E(3) 2002; 66(1):011814, 8.
-
-
-
-
31
-
-
0002916961
-
Mathematical modeling of tumor growth kinetics
-
Adam JA, Bellomo N eds, Birkhäuser: Boston
-
Bajzer Z, Vuk-Pavlovic S, Huzak M. Mathematical modeling of tumor growth kinetics. In A Survey of Models for Tumor-immune System Dynamics, Adam JA, Bellomo N (eds). Birkhäuser: Boston, 1997; 89-133.
-
(1997)
A Survey of Models for Tumor-immune System Dynamics
, pp. 89-133
-
-
Bajzer, Z.1
Vuk-Pavlovic, S.2
Huzak, M.3
-
33
-
-
7544243379
-
On the differences and similarities of the first order delay and ordinary differential equations
-
Bodnar M. On the differences and similarities of the first order delay and ordinary differential equations. Journal of Mathematical Analysis and Applications 2004; 300(1):172-188.
-
(2004)
Journal of Mathematical Analysis and Applications
, vol.300
, Issue.1
, pp. 172-188
-
-
Bodnar, M.1
-
36
-
-
7044226613
-
Biological delay systems and the Mikhailov criterion of stability
-
Foryś U. Biological delay systems and the Mikhailov criterion of stability. Journal of Biological Systems 2004; 12(1):1-16.
-
(2004)
Journal of Biological Systems
, vol.12
, Issue.1
, pp. 1-16
-
-
Foryś, U.1
|