메뉴 건너뛰기




Volumn 51, Issue 8, 2008, Pages 1064-1082

Multiobjective optimization using an immunodominance and clonal selection inspired algorithm

Author keywords

Artificial immune systems; Clonal selection; Evolutionary algorithms; Immunodominance; Multiobjective optimization

Indexed keywords


EID: 46749113373     PISSN: 10092757     EISSN: 18622836     Source Type: Journal    
DOI: 10.1007/s11432-008-0040-2     Document Type: Article
Times cited : (16)

References (53)
  • 1
    • 0002629429 scopus 로고
    • An overview of evolutionary algorithms in multiobjective optimization
    • 1
    • Fonseca C M, Fleming P J. An overview of evolutionary algorithms in multiobjective optimization. Evol Comp, 1995, 3(1): 1-16
    • (1995) Evol Comp , vol.3 , pp. 1-16
    • Fonseca, C.M.1    Fleming, P.J.2
  • 3
    • 0001953837 scopus 로고
    • Genetic algorithms for multiobjective optimization: Equation, discussion and generalization
    • California
    • Fonseca C M, Fleming P J. Genetic algorithms for multiobjective optimization: equation, discussion and generalization. In: Proc 5th Intern Conf Genetic Algor. San Mateo, California, 1993. 416-423
    • (1993) Proc 5th Intern Conf Genetic Algor. San Mateo , pp. 416-423
    • Fonseca, C.M.1    Fleming, P.J.2
  • 4
    • 0004200312 scopus 로고
    • Multiobjective optimization using the niched pareto genetic algorithm
    • Illinois Genetic Algorithms Laboratory, University of Illinois Urbana, Champaign
    • Horn J, Nafpliotis N. Multiobjective optimization using the niched pareto genetic algorithm. IlliGAL Report 93005, Illinois Genetic Algorithms Laboratory, University of Illinois, Urbana, Champaign, 1993.
    • (1993) IlliGAL Report 93005
    • Horn, J.1    Nafpliotis, N.2
  • 5
    • 0000852513 scopus 로고
    • Multiobjective optimization using nondominated sorting in genetic algorithms
    • 3
    • Srinivas N, Deb K. Multiobjective optimization using nondominated sorting in genetic algorithms. Evol Comp, 1994, 2(3): 221-248
    • (1994) Evol Comp , vol.2 , pp. 221-248
    • Srinivas, N.1    Deb, K.2
  • 6
    • 21944438566 scopus 로고    scopus 로고
    • Evolutionary multiobjective optimization: Current and future challenges
    • Springer-Verlag Berlin
    • Coello C A. Evolutionary multiobjective optimization: current and future challenges. In: Adv Soft Computing-Eng, Design and Manuf. Berlin: Springer-Verlag, 2003. 243-256
    • (2003) Adv Soft Computing-Eng, Design and Manuf , pp. 243-256
    • Coello, C.A.1
  • 7
    • 0033318858 scopus 로고    scopus 로고
    • Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach
    • 4
    • Zitzler E, Thiele L. Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans Evol Comp, 1999, 3(4): 257-271
    • (1999) IEEE Trans Evol Comp , vol.3 , pp. 257-271
    • Zitzler, E.1    Thiele, L.2
  • 9
    • 0034199912 scopus 로고    scopus 로고
    • Approximating the nondominated front using the Pareto archived evolution strategy
    • 2
    • Knowles J D, Corne D W. Approximating the nondominated front using the Pareto archived evolution strategy. Evol Comp, 2000, 8(2): 149-172
    • (2000) Evol Comp , vol.8 , pp. 149-172
    • Knowles, J.D.1    Corne, D.W.2
  • 10
    • 0036530772 scopus 로고    scopus 로고
    • A fast and elitist multiobjective genetic algorithm: NSGA-II
    • 2
    • Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evolut Comput, 2002, 6(2): 182-197
    • (2002) IEEE Trans Evolut Comput , vol.6 , pp. 182-197
    • Deb, K.1    Pratap, A.2    Agarwal, S.3
  • 13
    • 3142743169 scopus 로고    scopus 로고
    • Multiobjective optimization using a micro-genetic algorithm
    • Morgan Kaufmann Publishers, San Francisco, California
    • Coello Coello C A, Pulido G T. Multiobjective optimization using a micro-genetic algorithm. In: Proc Genetic Evolut Computation Conf (GECCO-2001), Morgan Kaufmann Publishers, San Francisco, California, 2001. 274-282
    • (2001) Proc Genetic Evolut Computation Conf (GECCO-2001) , pp. 274-282
    • Coello Coello, C.A.1    Pulido, G.T.2
  • 14
    • 0034104825 scopus 로고    scopus 로고
    • A formal model of an artificial immune system
    • 1/3
    • Tarakanov A, Dasgupta D. A formal model of an artificial immune system. BioSystems, 2000, 55(1/3): 151-158
    • (2000) BioSystems , vol.55 , pp. 151-158
    • Tarakanov, A.1    Dasgupta, D.2
  • 16
    • 0025554056 scopus 로고
    • Fully distributed diagnosis by PDP learning algorithm: Towards immune network PDP model
    • San Diego
    • Ishida Y. Fully distributed diagnosis by PDP learning algorithm: towards immune network PDP model. In: Proc Intern Joint Conf Neural Networks. San Diego, 1990. 777-782
    • (1990) Proc Intern Joint Conf Neural Networks , pp. 777-782
    • Ishida, Y.1
  • 17
  • 18
    • 84901440662 scopus 로고    scopus 로고
    • Combining negative selection and classification techniques for anomaly detection
    • IEEE World Congress on Computational Intelligence, Honolulu, Hawaii, May
    • Gonzalez F, Dasgupta D, Kozma R. Combining negative selection and classification techniques for anomaly detection. In: Proc Special Sessions Artif Immune Syst Congress on Evolut Computation, IEEE World Congress on Computational Intelligence, Honolulu, Hawaii, May 2002
    • (2002) Proc Special Sessions Artif Immune Syst Congress on Evolut Computation
    • Gonzalez, F.1    Dasgupta, D.2    Kozma, R.3
  • 19
    • 0033986060 scopus 로고    scopus 로고
    • The immune system as a model for pattern recognition and classification
    • 3
    • Carter J H. The immune system as a model for pattern recognition and classification. J American Medical Inform Assoc, 2000, 7(3): 28-41
    • (2000) J American Medical Inform Assoc , vol.7 , pp. 28-41
    • Carter, J.H.1
  • 20
    • 0034023975 scopus 로고    scopus 로고
    • An artificial immune system for data analysis
    • 1/3
    • Timmis J, Neal M, Hunt J. An artificial immune system for data analysis. Biosystems, 2000, 55(1/3): 143-150
    • (2000) Biosystems , vol.55 , pp. 143-150
    • Timmis, J.1    Neal, M.2    Hunt, J.3
  • 21
    • 21244440295 scopus 로고    scopus 로고
    • Improved pattern recognition with artificial clonal selection
    • Napier University Edinburgh, UK
    • White J A, Garrett S M. Improved pattern recognition with artificial clonal selection. In: Proc Second Intern Conf Artif Immune Syst (ICARIS). Napier University, Edinburgh, UK, September 1-3, 2003
    • (2003) Proc Second Intern Conf Artif Immune Syst (ICARIS)
    • White, J.A.1    Garrett, S.M.2
  • 22
    • 15744368384 scopus 로고    scopus 로고
    • The evolution and analysis of a potential antibody library for use in Job-shop scheduling
    • McGraw-Hill New York
    • Hart E, Ross P. The evolution and analysis of a potential antibody library for use in Job-shop scheduling. A chapter in the book "New Ideas in Optimization". New York: McGraw-Hill, 1999. 185-202
    • (1999) A Chapter in the Book "new Ideas in Optimization" , pp. 185-202
    • Hart, E.1    Ross, P.2
  • 25
    • 0036613006 scopus 로고    scopus 로고
    • Learning and optimization using the clonal selection principle
    • 3
    • de Castro L N, Von Zuben F J. Learning and optimization using the clonal selection principle. IEEE Trans Evol Comp, 2002, 6(3): 239-251
    • (2002) IEEE Trans Evol Comp , vol.6 , pp. 239-251
    • De Castro, L.N.1    Von Zuben, F.J.2
  • 26
    • 33746348631 scopus 로고    scopus 로고
    • Adaptive chaos clonal evolutionary programming algorithm
    • 5
    • Du H F, Gong M G, Liu R C, et al. Adaptive chaos clonal evolutionary programming algorithm. Sci China Ser F-Inf Sci, 2005, 48(5): 579-595
    • (2005) Sci China ser F-Inf Sci , vol.48 , pp. 579-595
    • Du, H.F.1    Gong, M.G.2    Liu, R.C.3
  • 27
    • 0031337534 scopus 로고    scopus 로고
    • GA based simulation of immune networks-applications in structural optimization
    • Hajela P, Yoo J, Lee J. GA based simulation of immune networks-applications in structural optimization. J Eng Optim, 1997
    • (1997) J Eng Optim
    • Hajela, P.1    Yoo, J.2    Lee, J.3
  • 28
    • 33750199105 scopus 로고    scopus 로고
    • Optimal approximation of linear systems by artificial immune response
    • 1
    • Gong M G, Du H F, Jiao L C. Optimal approximation of linear systems by artificial immune response. Sci China Ser F-Inf Sci, 2006, 49(1): 63-79
    • (2006) Sci China ser F-Inf Sci , vol.49 , pp. 63-79
    • Gong, M.G.1    Du, H.F.2    Jiao, L.C.3
  • 30
    • 17444430405 scopus 로고    scopus 로고
    • Solving multiobjective optimization problems using an artificial immune system
    • Coello Coello C A, Cruz Cortss N. Solving multiobjective optimization problems using an artificial immune system. Genetic Progr and Evolv Mach, 2005, 6: 163-190
    • (2005) Genetic Progr and Evolv Mach , vol.6 , pp. 163-190
    • Coello Coello, C.A.1    Cruz Cortss, N.2
  • 32
    • 0033046472 scopus 로고    scopus 로고
    • Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses
    • Yewdell J W, Bennink J R. Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses. Ann Rev Immun, 1999, 17: 51-88
    • (1999) Ann Rev Immun , vol.17 , pp. 51-88
    • Yewdell, J.W.1    Bennink, J.R.2
  • 33
    • 26944451244 scopus 로고    scopus 로고
    • Application areas of AIS: The past, the present and the future
    • Hart E, Timmis J. Application areas of AIS: the past, the present and the future. In: Proc 4th Intern Conf Artif immune Syst, ICARIS 2005. Springer, Lecture Notes in Computer Science, 2005, 3627: 483-497
    • (2005) Proc 4th Intern Conf Artif Immune Syst, ICARIS 2005 , vol.3627 , pp. 483-497
    • Hart, E.1    Timmis, J.2
  • 35
  • 38
    • 3543056828 scopus 로고    scopus 로고
    • An approach to solve multiobjective optimization problems based on an artificial immune system
    • University of Kent at Canterbury, UK, September, 9-11
    • Coello Coello C A, Cortes N C. An approach to solve multiobjective optimization problems based on an artificial immune system. In: Proc First Intern Conf Artif Immune Syst, ICARIS2002, University of Kent at Canterbury, UK, September, 9-11, 2002. 212-221
    • (2002) Proc First Intern Conf Artif Immune Syst, ICARIS2002 , pp. 212-221
    • Coello Coello, C.A.1    Cortes, N.C.2
  • 39
    • 26944470324 scopus 로고    scopus 로고
    • Multiobjective optimization by a modified artificial immune system algorithm
    • Freschi F, Repetto M. Multiobjective optimization by a modified artificial immune system algorithm. In: Proc 4th Intern Conf on artif immune syst, ICARIS 2005. Springer, Lecture Notes in Comput Sci, 2005, 3627: 248-261
    • (2005) Proc 4th Intern Conf on Artif Immune Syst, ICARIS 2005 , vol.3627 , pp. 248-261
    • Freschi, F.1    Repetto, M.2
  • 41
    • 46149127936 scopus 로고
    • The immune system, adaptation, and machine learning
    • 1-3
    • Farmer J D, Packard N H, Perelson A S. The immune system, adaptation, and machine learning. Physica D, 1986, 2(1-3): 187-204
    • (1986) Physica D , vol.2 , pp. 187-204
    • Farmer, J.D.1    Packard, N.H.2    Perelson, A.S.3
  • 43
    • 0002096988 scopus 로고
    • Reducing the size of the nondominated set: Pruning by clustering
    • 1-2
    • Morse J N. Reducing the size of the nondominated set: pruning by clustering. Comput Oper Res, 1980, 7(1-2): 55-66
    • (1980) Comput Oper Res , vol.7 , pp. 55-66
    • Morse, J.N.1
  • 44
    • 0011374085 scopus 로고
    • Reducing the Pareto optimal set in multicriteria optimization
    • Rosenman M A, Gero J S. Reducing the Pareto optimal set in multicriteria optimization. Eng Optim, 8, 1985: 189-206
    • (1985) Eng Optim , vol.8 , pp. 189-206
    • Rosenman, M.A.1    Gero, J.S.2
  • 46
    • 0034199979 scopus 로고    scopus 로고
    • Comparison of multiobjective evolutionary algorithms: Empirical results
    • 2
    • Zitzler E, Deb K, Thiele L. Comparison of multiobjective evolutionary algorithms: empirical results. Evol Comp, 2000, 8(2): 173-195
    • (2000) Evol Comp , vol.8 , pp. 173-195
    • Zitzler, E.1    Deb, K.2    Thiele, L.3
  • 47
    • 0037936618 scopus 로고    scopus 로고
    • Performance assessment of multiobjective optimizers: An analysis and review
    • 2
    • Zitzler E, Thiele L, Laumanns M, et al. Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans Evol Comp, 2003, 7(2): 117-132
    • (2003) IEEE Trans Evol Comp , vol.7 , pp. 117-132
    • Zitzler, E.1    Thiele, L.2    Laumanns, M.3
  • 48
    • 0033185714 scopus 로고    scopus 로고
    • Multi-objective genetic algorithms: Problem difficulties and construction of test problems
    • 3
    • Deb K. Multi-objective genetic algorithms: problem difficulties and construction of test problems. Evol Comp, 1999, 7(3): 205-230
    • (1999) Evol Comp , vol.7 , pp. 205-230
    • Deb, K.1
  • 50
    • 34249839613 scopus 로고
    • Genetic search strategies in multicriterion optimal design
    • Hajela P, Lin C Y. Genetic search strategies in multicriterion optimal design. Struct Optim, 1992, 4: 99-107
    • (1992) Struct Optim , vol.4 , pp. 99-107
    • Hajela, P.1    Lin, C.Y.2
  • 51
    • 0037803427 scopus 로고    scopus 로고
    • Using unconstrained elite archives for multiobjective optimization
    • 3
    • Fieldsend J, Everson R M, Singh S. Using unconstrained elite archives for multiobjective optimization. IEEE Trans Evol Comp, 2003, 7(3): 305-323
    • (2003) IEEE Trans Evol Comp , vol.7 , pp. 305-323
    • Fieldsend, J.1    Everson, R.M.2    Singh, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.