메뉴 건너뛰기




Volumn 10, Issue 2, 2008, Pages 71-83

Overview of fuzzified neural networks with comparison of learning mechanism

Author keywords

Back propagation; Fuzzy arithmetic; Fuzzy neural networks; Learning algorithm

Indexed keywords

FUZZY INFERENCE; FUZZY NEURAL NETWORKS; FUZZY RULES; NUMERICAL METHODS;

EID: 46749109650     PISSN: 15622479     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (4)

References (27)
  • 2
    • 0012076955 scopus 로고
    • Can fuzzy neural nets approximate continuous fuzzy functions?
    • J.J. Buckley and Y. Hayashi, "Can fuzzy neural nets approximate continuous fuzzy functions?" Fuzzy Sets and Systems, vol.61, pp.43-52, 1994.
    • (1994) Fuzzy Sets and Systems , vol.61 , pp. 43-52
    • Buckley, J.J.1    Hayashi, Y.2
  • 3
    • 0001037218 scopus 로고    scopus 로고
    • Fuzzy Interval Analysis
    • D. Dubois and H. Prade eds, Kluwer Academic, pp
    • D. Dubois, E. Kerre, R. Mesiar, and H. Prade, "Fuzzy Interval Analysis," in: D. Dubois and H. Prade (eds.), Fundamentals of Fuzzy Sets, Kluwer Academic, pp.483-581, 2000.
    • (2000) Fundamentals of Fuzzy Sets , pp. 483-581
    • Dubois, D.1    Kerre, E.2    Mesiar, R.3    Prade, H.4
  • 5
    • 0033361980 scopus 로고    scopus 로고
    • Fuzzy number neural networks
    • J. Dunyak and D. Wunsch, "Fuzzy number neural networks," Fuzzy Sets and Systems, vol.108, pp.48-58, 1999.
    • (1999) Fuzzy Sets and Systems , vol.108 , pp. 48-58
    • Dunyak, J.1    Wunsch, D.2
  • 6
    • 0013387856 scopus 로고    scopus 로고
    • The fuzzy neural network approximation lemma
    • T. Feuring and W.-M. Lippe, "The fuzzy neural network approximation lemma," Fuzzy Sets and Systems, vol.102, pp.227-236, 1999.
    • (1999) Fuzzy Sets and Systems , vol.102 , pp. 227-236
    • Feuring, T.1    Lippe, W.-M.2
  • 7
    • 0142032236 scopus 로고    scopus 로고
    • Analysis of the error in the standard approximation used for multiplication of triangular and trapezoid fuzzy numbers and the development of a new approximation
    • R.E. Giachetti and R.E. Young, "Analysis of the error in the standard approximation used for multiplication of triangular and trapezoid fuzzy numbers and the development of a new approximation," Fuzzy Sets and Systems, vol.91, pp. 1-13, 1997.
    • (1997) Fuzzy Sets and Systems , vol.91 , pp. 1-13
    • Giachetti, R.E.1    Young, R.E.2
  • 8
    • 11144323167 scopus 로고    scopus 로고
    • Approximate fuzzy arithmetic operations using monotonic interpolations
    • M.L. Guerra and L. Stefanini, "Approximate fuzzy arithmetic operations using monotonic interpolations," Fuzzy Sets and Systems, vol.150, pp.5-33, 2005.
    • (2005) Fuzzy Sets and Systems , vol.150 , pp. 5-33
    • Guerra, M.L.1    Stefanini, L.2
  • 11
    • 0029297402 scopus 로고
    • A learning algorithm of fuzzy neural networks with triangular fuzzy weights
    • Prentice Hall
    • H. Ishibuchi, K. Kwon, and H. Tanaka, "A learning algorithm of fuzzy neural networks with triangular fuzzy weights," Fuzzy Sets and Systems, Prentice Hall, 71, pp.277-293, 1995.
    • (1995) Fuzzy Sets and Systems , vol.71 , pp. 277-293
    • Ishibuchi, H.1    Kwon, K.2    Tanaka, H.3
  • 13
    • 0035313816 scopus 로고    scopus 로고
    • Fuzzy regression using asymmetric fuzzy coefficients and fuzzified neural networks
    • H. Ishibuchi and M. Nii, "Fuzzy regression using asymmetric fuzzy coefficients and fuzzified neural networks," Fuzzy Sets and Systems, vol.119, pp.273-290. 2001.
    • (2001) Fuzzy Sets and Systems , vol.119 , pp. 273-290
    • Ishibuchi, H.1    Nii, M.2
  • 14
    • 0035897963 scopus 로고    scopus 로고
    • Numerical analysis of the learning of fuzzified neural networks from fuzzy if-then rules
    • H. Ishibuchi and M. Nii, "Numerical analysis of the learning of fuzzified neural networks from fuzzy if-then rules," Fuzzy Sets and Systems, vol.120, pp.281-307. 2001.
    • (2001) Fuzzy Sets and Systems , vol.120 , pp. 281-307
    • Ishibuchi, H.1    Nii, M.2
  • 15
    • 0032845493 scopus 로고    scopus 로고
    • HyFIS: Adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems
    • J. Kim and N. Kasabov, "HyFIS: adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems," Neural Networks, vol.12, pp.1301-1319. 1999.
    • (1999) Neural Networks , vol.12 , pp. 1301-1319
    • Kim, J.1    Kasabov, N.2
  • 16
    • 0037119854 scopus 로고    scopus 로고
    • Fuzzified neural network based on fuzzy number operations
    • Z. Li, V. Kecman, and A. Ichikawa, "Fuzzified neural network based on fuzzy number operations," Fuzzy Sets and Systems, vol.130, pp.291-304. 2002.
    • (2002) Fuzzy Sets and Systems , vol.130 , pp. 291-304
    • Li, Z.1    Kecman, V.2    Ichikawa, A.3
  • 17
    • 0029275364 scopus 로고
    • A neural fuzzy control system with structure and parameter learning
    • C.T. Lin, "A neural fuzzy control system with structure and parameter learning," Fuzzy Sets and Systems, vol.170, pp.183-212. 1995.
    • (1995) Fuzzy Sets and Systems , vol.170 , pp. 183-212
    • Lin, C.T.1
  • 18
    • 0036533602 scopus 로고    scopus 로고
    • A neural fuzzy network for word information processing
    • C.T. Lin, F.B. Duh, and D.J. Liu, "A neural fuzzy network for word information processing," Fuzzy Sets and Systems, vol.127, pp.37-48. 2002.
    • (2002) Fuzzy Sets and Systems , vol.127 , pp. 37-48
    • Lin, C.T.1    Duh, F.B.2    Liu, D.J.3
  • 19
    • 0002808756 scopus 로고
    • Supervised and unsupervised learning with fuzzy similarity for neural network-based fuzzy logic control systems
    • R.R. Yager, and L.A. Zadeh eds, New York: Van Nostrand Reinhold, pp
    • C.T. Lin and C.S. George Lee, "Supervised and unsupervised learning with fuzzy similarity for neural network-based fuzzy logic control systems," in: R.R. Yager, and L.A. Zadeh (eds.), Fuzzy Sets, Neural Networks, and Soft Computing, New York: Van Nostrand Reinhold, pp.85-124, 1994.
    • (1994) Fuzzy Sets, Neural Networks, and Soft Computing , pp. 85-124
    • Lin, C.T.1    George Lee, C.S.2
  • 20
    • 0008718625 scopus 로고    scopus 로고
    • Analyses of regular fuzzy neural networks for approximation capabilities
    • P. Liu, "Analyses of regular fuzzy neural networks for approximation capabilities," Fuzzy Sets and Systems, vol.114, pp.329-338. 2000.
    • (2000) Fuzzy Sets and Systems , vol.114 , pp. 329-338
    • Liu, P.1
  • 23
    • 0037809674 scopus 로고    scopus 로고
    • Approximated fuzzy LR computation
    • M. Oussalah and J.D. Schutter, "Approximated fuzzy LR computation," Information Sciences, vol.153, pp.155-175. 2003.
    • (2003) Information Sciences , vol.153 , pp. 155-175
    • Oussalah, M.1    Schutter, J.D.2
  • 24
  • 25
    • 7544221770 scopus 로고    scopus 로고
    • A fuzzy neural network approximator with fast terminal sliding mode and its applications
    • S. Yu, X. Yu, and Z. Man, "A fuzzy neural network approximator with fast terminal sliding mode and its applications," Fuzzy Sets and Systems, vol.148, pp.469-486. 2004.
    • (2004) Fuzzy Sets and Systems , vol.148 , pp. 469-486
    • Yu, S.1    Yu, X.2    Man, Z.3
  • 26
    • 3042549361 scopus 로고    scopus 로고
    • Fuzzy identification using fuzzy neural networks with stable learning algorithms
    • W Yu and X. Li, "Fuzzy identification using fuzzy neural networks with stable learning algorithms," IEEE Transactions on Fuzzy Systems, vol.12, no.3, pp.411-420. 2004.
    • (2004) IEEE Transactions on Fuzzy Systems , vol.12 , Issue.3 , pp. 411-420
    • Yu, W.1    Li, X.2
  • 27
    • 34248666540 scopus 로고    scopus 로고
    • L.A. Zadeh, Fuzzy sets, Information and Control, 8, pp.338-352. 1965.
    • L.A. Zadeh, "Fuzzy sets," Information and Control, vol.8, pp.338-352. 1965.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.