-
1
-
-
0036041771
-
Random sampling and approximation of MAX-CSP problems
-
ACM Press
-
N. Alon, W. F. de la Vega, R. Kannan and M. Karpinski, Random sampling and approximation of MAX-CSP problems, Proc. of the 34 ACM STOC, ACM Press (2002), 232-239.
-
(2002)
Proc. of the 34 ACM STOC
, pp. 232-239
-
-
Alon, N.1
de la Vega, W.F.2
Kannan, R.3
Karpinski, M.4
-
2
-
-
85128116179
-
Also
-
Also: JCSS 67 (2003), 212-243.
-
(2003)
JCSS
, vol.67
, pp. 212-243
-
-
-
3
-
-
0003114972
-
The algorithmic aspects of the regularity lemma
-
N. Alon, R. A. Duke, H. Lefmann, V. Rödl and R. Yuster, The algorithmic aspects of the regularity lemma, J. of Algorithms 16 (1994), 80-109.
-
(1994)
J. of Algorithms
, vol.16
, pp. 80-109
-
-
Alon, N.1
Duke, R.A.2
Lefmann, H.3
Rödl, V.4
Yuster, R.5
-
4
-
-
33747188137
-
Approximating the cut-norm via Grothendieck's inequality
-
N. Alon and A. Naor, Approximating the cut-norm via Grothendieck's inequality, SIAM J. on Computing 35 (2006), 787-803.
-
(2006)
SIAM J. on Computing
, vol.35
, pp. 787-803
-
-
Alon, N.1
Naor, A.2
-
6
-
-
0033077325
-
Polynomial time approximation schemes for dense instances of NP-Hard problems
-
S. Arora, D. R. Karger and M. Karpinski, Polynomial time approximation schemes for dense instances of NP-Hard problems, J. Comput. Syst. Sci. 58 (1999), 193-210.
-
(1999)
J. Comput. Syst. Sci
, vol.58
, pp. 193-210
-
-
Arora, S.1
Karger, D.R.2
Karpinski, M.3
-
7
-
-
84990658253
-
Regularity lemmas for hypergraphs and quasi-randomness
-
F.R.K. Chung, Regularity lemmas for hypergraphs and quasi-randomness, Random Structures and Algorithms, 2 (1991), 241-252.
-
(1991)
Random Structures and Algorithms
, vol.2
, pp. 241-252
-
-
Chung, F.R.K.1
-
8
-
-
15744399663
-
Testing hypergraph colorability, Theon Comput
-
A. Czumaj and C. Sohler, Testing hypergraph colorability, Theon Comput. Sci. 331 (2005), 37-52.
-
(2005)
Sci
, vol.331
, pp. 37-52
-
-
Czumaj, A.1
Sohler, C.2
-
9
-
-
0034854358
-
An algorithmic regularity lemma for hypergraphs
-
A. Czygrinow and V. Rödl, An algorithmic regularity lemma for hypergraphs, SIAM Journal on Computing, 30 (2000), 1041-1066.
-
(2000)
SIAM Journal on Computing
, vol.30
, pp. 1041-1066
-
-
Czygrinow, A.1
Rödl, V.2
-
10
-
-
0003677229
-
-
Third Edition, Springer-Verlag
-
R. Diestel, Graph Theory, Third Edition, Springer-Verlag, 2005.
-
(2005)
Graph Theory
-
-
Diestel, R.1
-
11
-
-
0029322260
-
A fast approximation algorithm for computing the frequencies of subgraphs in a given graph
-
R. Duke, H. Lefman and V. Rödl, A fast approximation algorithm for computing the frequencies of subgraphs in a given graph, SIAM J. on Computing 24 (1995) 598-620.
-
(1995)
SIAM J. on Computing
, vol.24
, pp. 598-620
-
-
Duke, R.1
Lefman, H.2
Rödl, V.3
-
12
-
-
0030136319
-
Max-Cut has a randomized approximation scheme in dense graphs
-
W. Fernandez de la Vega, Max-Cut has a randomized approximation scheme in dense graphs, Random Struct. Algorithms 8 (1996), 187-198.
-
(1996)
Random Struct. Algorithms
, vol.8
, pp. 187-198
-
-
Fernandez de la Vega, W.1
-
13
-
-
34848884260
-
-
E. Fischer and I. Newman, Testing versus estimation of graph properties, Proc. of STOC 2005, 138-146.
-
E. Fischer and I. Newman, Testing versus estimation of graph properties, Proc. of STOC 2005, 138-146.
-
-
-
-
14
-
-
84900350706
-
Also, SICOMP
-
to appear
-
Also, SICOMP, to appear.
-
-
-
-
15
-
-
0040942625
-
Quick approximation to matrices and applications
-
A. Frieze and R. Kannan, Quick approximation to matrices and applications, Combinatorica 19 (1999), 175-220.
-
(1999)
Combinatorica
, vol.19
, pp. 175-220
-
-
Frieze, A.1
Kannan, R.2
-
16
-
-
0003773292
-
-
A. Frieze and R. Kannan, A simple algorithm for constructing Szemerédi's regularity partition, Electr. J. Comb. 6: (1999).
-
A. Frieze and R. Kannan, A simple algorithm for constructing Szemerédi's regularity partition, Electr. J. Comb. 6: (1999).
-
-
-
-
17
-
-
0030389356
-
-
A. Frieze and R. Kannan, The regularity lemma and approximation schemes for dense problems, Proc. of FOCS 1996, 12-20.
-
A. Frieze and R. Kannan, The regularity lemma and approximation schemes for dense problems, Proc. of FOCS 1996, 12-20.
-
-
-
-
18
-
-
0032108275
-
Property testing and its connection to learning and approximation
-
O. Goldreich, S. Goldwasser and D. Ron, Property testing and its connection to learning and approximation, JACM 45(4): 653-750 (1998).
-
(1998)
JACM
, vol.45
, Issue.4
, pp. 653-750
-
-
Goldreich, O.1
Goldwasser, S.2
Ron, D.3
-
19
-
-
0031285884
-
Lower bounds of tower type for Szemerédi's uniformity lemma
-
T. Gowers, Lower bounds of tower type for Szemerédi's uniformity lemma, GAFA 7 (1997), 322-337.
-
(1997)
GAFA
, vol.7
, pp. 322-337
-
-
Gowers, T.1
-
20
-
-
11144339501
-
Hypergraph regularity and the multidimensional Szemerédi theorem
-
manuscript
-
T. Gowers, Hypergraph regularity and the multidimensional Szemerédi theorem, manuscript, 2006.
-
(2006)
-
-
Gowers, T.1
-
21
-
-
33645014263
-
-
P. Haxell, B. Nagle and V. Rödl, An algorithmic version of the hypergraph regularity method, Proc of FOCS 2005, 439-448.
-
P. Haxell, B. Nagle and V. Rödl, An algorithmic version of the hypergraph regularity method, Proc of FOCS 2005, 439-448.
-
-
-
-
22
-
-
0036183705
-
-
Y. Kohayakawa, V. Rödl and J. Skokan, Hypergraphs, quasi-randomness, and conditions for regularity, J. of Combinatorial Theory A, 97 (2002), 307-352.
-
Y. Kohayakawa, V. Rödl and J. Skokan, Hypergraphs, quasi-randomness, and conditions for regularity, J. of Combinatorial Theory A, 97 (2002), 307-352.
-
-
-
-
23
-
-
0344153343
-
An optimal algorithm for checking regularity
-
Y. Kohayakawa, V. Rödl and L. Thoma, An optimal algorithm for checking regularity, SIAM J. on Computing 32 (2003), no. 5, 1210-1235.
-
(2003)
SIAM J. on Computing
, vol.32
, Issue.5
, pp. 1210-1235
-
-
Kohayakawa, Y.1
Rödl, V.2
Thoma, L.3
-
24
-
-
0000501688
-
Szemerédi's regularity lemma and its applications in graph theory
-
D. Miklós, V. T. Sós, T. Szönyi eds, János Bolyai Math. Soc, Budapest
-
J. Komlós and M. Simonovits, Szemerédi's regularity lemma and its applications in graph theory. In: Combinatorics, Paul Erdos is Eighty, Vol II (D. Miklós, V. T. Sós, T. Szönyi eds.), János Bolyai Math. Soc., Budapest (1996), 295-352.
-
(1996)
Combinatorics, Paul Erdos is Eighty
, vol.2
, pp. 295-352
-
-
Komlós, J.1
Simonovits, M.2
-
25
-
-
35048841639
-
Testing the independence number of hypergraphs
-
M. Langberg, Testing the independence number of hypergraphs, Proc. of RANDOM 2004, 405-416.
-
(2004)
Proc. of RANDOM
, pp. 405-416
-
-
Langberg, M.1
-
28
-
-
0001549458
-
Integer sets containing no k elements in arithmetic progression
-
E. Szemerédi, Integer sets containing no k elements in arithmetic progression, Acta Arith. 27 (1975), 299-345.
-
(1975)
Acta Arith
, vol.27
, pp. 299-345
-
-
Szemerédi, E.1
-
29
-
-
0002572651
-
Regular partitions of graphs
-
J. C. Bermond, J. C. Fournier, M. Las Vergnas and D. Sotteau, eds
-
E. Szemerédi, Regular partitions of graphs, In: Proc. Colloque Inter. CNRS (J. C. Bermond, J. C. Fournier, M. Las Vergnas and D. Sotteau, eds.), 1978, 399-401.
-
(1978)
Proc. Colloque Inter. CNRS
, pp. 399-401
-
-
Szemerédi, E.1
-
30
-
-
33746620574
-
A variant of the hypergraph removal lemma
-
T. Tao, A variant of the hypergraph removal lemma, J. Combin. Theory, Ser. A 113 (2006), 1257-1280.
-
(2006)
J. Combin. Theory, Ser. A
, vol.113
, pp. 1257-1280
-
-
Tao, T.1
|