-
2
-
-
0035831998
-
Soliton solutions for a generalized Hirota Satsuma coupled KdV equation and a coupled MKdV equation
-
Fan E. Soliton solutions for a generalized Hirota Satsuma coupled KdV equation and a coupled MKdV equation. Phys. Lett. A 282 1-2 (2001) 18-22
-
(2001)
Phys. Lett. A
, vol.282
, Issue.1-2
, pp. 18-22
-
-
Fan, E.1
-
3
-
-
0037440579
-
Homotopy perturbation method: a new nonlinear analytical technique
-
He J.-H. Homotopy perturbation method: a new nonlinear analytical technique. Appl. Math. Comput. 135 1 (2003) 73-79
-
(2003)
Appl. Math. Comput.
, vol.135
, Issue.1
, pp. 73-79
-
-
He, J.-H.1
-
4
-
-
1242287587
-
The homotopy perturbation method for nonlinear oscillators with discontinuities
-
He J.-H. The homotopy perturbation method for nonlinear oscillators with discontinuities. Appl. Math. Comput. 151 1 (2004) 287-292
-
(2004)
Appl. Math. Comput.
, vol.151
, Issue.1
, pp. 287-292
-
-
He, J.-H.1
-
5
-
-
0040184009
-
Variational iteration method for autonomous ordinary differential system
-
He J.-H. Variational iteration method for autonomous ordinary differential system. Appl. Math. Comput. 114 (2000) 115-123
-
(2000)
Appl. Math. Comput.
, vol.114
, pp. 115-123
-
-
He, J.-H.1
-
6
-
-
0032672778
-
Homotopy perturbation technique
-
He J.-H. Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 178 3-4 (1999) 257-262
-
(1999)
Comput. Methods Appl. Mech. Eng.
, vol.178
, Issue.3-4
, pp. 257-262
-
-
He, J.-H.1
-
7
-
-
3943092529
-
Comparison of homotopy perturbation method and homotopy analysis method
-
He J.-H. Comparison of homotopy perturbation method and homotopy analysis method. Appl. Math. Comput. 156 2 (2004) 527-539
-
(2004)
Appl. Math. Comput.
, vol.156
, Issue.2
, pp. 527-539
-
-
He, J.-H.1
-
8
-
-
18844426016
-
Application of homotopy perturbation method to nonlinear wave equations
-
He J.-H. Application of homotopy perturbation method to nonlinear wave equations. Chaos Solitons Fract. 26 3 (2005) 695-700
-
(2005)
Chaos Solitons Fract.
, vol.26
, Issue.3
, pp. 695-700
-
-
He, J.-H.1
-
9
-
-
4344696077
-
Asymptotology by homotopy perturbation method
-
He J.-H. Asymptotology by homotopy perturbation method. Appl. Math. Comput. 156 3 (2004) 591-596
-
(2004)
Appl. Math. Comput.
, vol.156
, Issue.3
, pp. 591-596
-
-
He, J.-H.1
-
10
-
-
0043132161
-
A series of new solutions for a complex coupled KdV system
-
Hon Y.C., and Fan E.G. A series of new solutions for a complex coupled KdV system. Chaos Solitons Fract. 19 (2004) 515-525
-
(2004)
Chaos Solitons Fract.
, vol.19
, pp. 515-525
-
-
Hon, Y.C.1
Fan, E.G.2
-
11
-
-
1842505268
-
Exact and numerical traveling wave solutions for nonlinear coupled equations using symbolic computation
-
Kaya D., and Inan I.E. Exact and numerical traveling wave solutions for nonlinear coupled equations using symbolic computation. Appl. Math. Comput. 151 3 (2004) 775-787
-
(2004)
Appl. Math. Comput.
, vol.151
, Issue.3
, pp. 775-787
-
-
Kaya, D.1
Inan, I.E.2
-
12
-
-
0032204257
-
Backlund transformations and exact soliton solutions for some nonlinear evolution equations of the zs/akns system
-
Khater A.H., Ibrahim R.S., El-kalaawy O.H., and Callebaut D.K. Backlund transformations and exact soliton solutions for some nonlinear evolution equations of the zs/akns system. Chaos Solitons Fract. 9 11 (1998) 1847-1855
-
(1998)
Chaos Solitons Fract.
, vol.9
, Issue.11
, pp. 1847-1855
-
-
Khater, A.H.1
Ibrahim, R.S.2
El-kalaawy, O.H.3
Callebaut, D.K.4
-
13
-
-
0346339761
-
Travelling wave solutions of some classes of nonlinear evolution equations in (1 + 1) and higher dimensions
-
Khater A.H., Malfliet W., and Kamel E.S. Travelling wave solutions of some classes of nonlinear evolution equations in (1 + 1) and higher dimensions. Math. Comput. Simul. 64 2 (2004) 247-258
-
(2004)
Math. Comput. Simul.
, vol.64
, Issue.2
, pp. 247-258
-
-
Khater, A.H.1
Malfliet, W.2
Kamel, E.S.3
-
14
-
-
0001229736
-
Solitary wave solutions of nonlinear wave equations
-
Malfliet W. Solitary wave solutions of nonlinear wave equations. Am. J. Phys. 60 (1992) 650-654
-
(1992)
Am. J. Phys.
, vol.60
, pp. 650-654
-
-
Malfliet, W.1
-
15
-
-
34548624933
-
New extension of the tanh-function method and application to the Whitham-Broer-Kaup shallow water model with symbolic computation
-
Xu T., Li J., Zhang H.-Q., Zhang Y.-X., Zhen-Zhi, and Tian B. New extension of the tanh-function method and application to the Whitham-Broer-Kaup shallow water model with symbolic computation. Phys. Lett. A 369 (2007) 458-463
-
(2007)
Phys. Lett. A
, vol.369
, pp. 458-463
-
-
Xu, T.1
Li, J.2
Zhang, H.-Q.3
Zhang, Y.-X.4
Zhen-Zhi5
Tian, B.6
-
16
-
-
34250696383
-
On the convergence of He's variational iteration method
-
Tatari M., and Dehghan M. On the convergence of He's variational iteration method. Comput. Appl. Math. 207 1 (2007) 121-128
-
(2007)
Comput. Appl. Math.
, vol.207
, Issue.1
, pp. 121-128
-
-
Tatari, M.1
Dehghan, M.2
-
17
-
-
0004039121
-
Exact soliton solutions of some nonlinear physical models
-
Lu H., and Wang M. Exact soliton solutions of some nonlinear physical models. Phys. Lett. A 255 (1999) 249-252
-
(1999)
Phys. Lett. A
, vol.255
, pp. 249-252
-
-
Lu, H.1
Wang, M.2
-
18
-
-
26844508856
-
Exact and explicit travelling wave solutions for the nonlinear DrinfeldSokolov system
-
Wazwaz A.-M. Exact and explicit travelling wave solutions for the nonlinear DrinfeldSokolov system. Commun. Nonlinear Sci. Numer. Simul. 11 3 (2006) 311-325
-
(2006)
Commun. Nonlinear Sci. Numer. Simul.
, vol.11
, Issue.3
, pp. 311-325
-
-
Wazwaz, A.-M.1
-
19
-
-
27144474748
-
Two reliable methods for solving variants of the KdV equation with compact and noncompact structures
-
Wazwaz A.-M. Two reliable methods for solving variants of the KdV equation with compact and noncompact structures. Chaos Solitons Fract. 28 2 (2006) 454-462
-
(2006)
Chaos Solitons Fract.
, vol.28
, Issue.2
, pp. 454-462
-
-
Wazwaz, A.-M.1
-
20
-
-
30144445774
-
The tanh method for compact and noncompact solutions for variants of the KdV-Burger and the K (n, n)-Burger equations
-
Wazwaz A.-M. The tanh method for compact and noncompact solutions for variants of the KdV-Burger and the K (n, n)-Burger equations. Phys. D: Nonlinear Phenomena 213 2 (2006) 147-151
-
(2006)
Phys. D: Nonlinear Phenomena
, vol.213
, Issue.2
, pp. 147-151
-
-
Wazwaz, A.-M.1
-
21
-
-
0345985752
-
A generalized Hirota Satsuma coupled Kortewegde Vries equation and Miura transformations
-
Wu Y., Geng X., Hu X., and Zhu S. A generalized Hirota Satsuma coupled Kortewegde Vries equation and Miura transformations. Phys. Lett. A 255 4-6 (1999) 259-264
-
(1999)
Phys. Lett. A
, vol.255
, Issue.4-6
, pp. 259-264
-
-
Wu, Y.1
Geng, X.2
Hu, X.3
Zhu, S.4
-
22
-
-
19144373598
-
New exact solutions to the generalized coupled Hirota Satsuma KdV system
-
Yong X.-l., and Zhang H.-Q. New exact solutions to the generalized coupled Hirota Satsuma KdV system. Chaos Solitons Fract. 26 4 (2005) 1105-1110
-
(2005)
Chaos Solitons Fract.
, vol.26
, Issue.4
, pp. 1105-1110
-
-
Yong, X.-l.1
Zhang, H.-Q.2
|