메뉴 건너뛰기




Volumn 130, Issue 1, 2008, Pages 0145011-0145015

An application of physics-based and artificial neural networks-based hybrid temperature prediction schemes in a hot strip mill

Author keywords

Artificial neural networks; Heat transfer models; Hot strip mill; Hybrid models; Temperature prediction

Indexed keywords

DIELECTRIC PROPERTIES; FORECASTING; HEAT TRANSFER; HOT ROLLING MILLS; STRIP METAL; STRIP MILLS;

EID: 46649105274     PISSN: 10871357     EISSN: None     Source Type: Journal    
DOI: 10.1115/1.2783223     Document Type: Article
Times cited : (14)

References (23)
  • 6
    • 0034855267 scopus 로고    scopus 로고
    • Robust Design of Artificial Neural Network for Roll Force Prediction in Hot Strip Mill
    • Washington, DC
    • Kim, Y. S., Yum, B. J., and Kim, M., 2001, "Robust Design of Artificial Neural Network for Roll Force Prediction in Hot Strip Mill," IEEE International Joint Conference on Neural Network, Washington, DC, 4, pp. 2800-2804.
    • (2001) IEEE International Joint Conference on Neural Network , vol.4 , pp. 2800-2804
    • Kim, Y.S.1    Yum, B.J.2    Kim, M.3
  • 7
    • 0035481747 scopus 로고    scopus 로고
    • Chen, M. Y., and Linkens, D. A., 2001, A Systematic Neuro Fuzzy Modeling Framework With and Application to Material Property Prediction, IEEE Trans. Syst., Man, Cybern., Part B: Cybern., 31(5), pp. 781-790.
    • Chen, M. Y., and Linkens, D. A., 2001, "A Systematic Neuro Fuzzy Modeling Framework With and Application to Material Property Prediction," IEEE Trans. Syst., Man, Cybern., Part B: Cybern., 31(5), pp. 781-790.
  • 9
    • 0035445545 scopus 로고    scopus 로고
    • Current and Future Development in Neural Computation in Steel Processing
    • Schlang, M., Lang, B., Poppe, T., Runkler, T., Weinzierl, K., 2001, "Current and Future Development in Neural Computation in Steel Processing," Control Eng. Pract., 9(9), pp. 975-986.
    • (2001) Control Eng. Pract , vol.9 , Issue.9 , pp. 975-986
    • Schlang, M.1    Lang, B.2    Poppe, T.3    Runkler, T.4    Weinzierl, K.5
  • 10
    • 0030646203 scopus 로고    scopus 로고
    • Prediction of the Measured Temperature After the last Finishing Stand Using Artificial Neural Networks
    • Vermeulen, W., Brodin, A., and van der Zwaag, S., 1997, "Prediction of the Measured Temperature After the last Finishing Stand Using Artificial Neural Networks," Steel Res., 68(1), pp. 20-26.
    • (1997) Steel Res , vol.68 , Issue.1 , pp. 20-26
    • Vermeulen, W.1    Brodin, A.2    van der Zwaag, S.3
  • 11
    • 0031381882 scopus 로고    scopus 로고
    • Modelling of the Hot Strip Mill Runout Table Using Artificial Neural Networks
    • Loney, D., Roberts, I., and Watson, J., 1997, "Modelling of the Hot Strip Mill Runout Table Using Artificial Neural Networks," Ironmaking Steelmaking, 24(1), pp. 34-39.
    • (1997) Ironmaking Steelmaking , vol.24 , Issue.1 , pp. 34-39
    • Loney, D.1    Roberts, I.2    Watson, J.3
  • 12
    • 33845732730 scopus 로고    scopus 로고
    • Entry Temperature Prediction of a Hot Strip Mill by a Hybrid Learning Type-2 FLS
    • Méndez, G. M., Cavazos, A., Soto, R., and Leduc, L. A., 2006, "Entry Temperature Prediction of a Hot Strip Mill by a Hybrid Learning Type-2 FLS," J. Intell. Fuzzy Syst., 17(6), pp. 583-596.
    • (2006) J. Intell. Fuzzy Syst , vol.17 , Issue.6 , pp. 583-596
    • Méndez, G.M.1    Cavazos, A.2    Soto, R.3    Leduc, L.A.4
  • 14
    • 0028484335 scopus 로고
    • Modeling Chemical Processes Using Prior Knowledge and Neural Networks
    • Thompson, M. L., and Kramer, M. A., 1994, "Modeling Chemical Processes Using Prior Knowledge and Neural Networks," AIChE J., 40, pp. 1328-1340.
    • (1994) AIChE J , vol.40 , pp. 1328-1340
    • Thompson, M.L.1    Kramer, M.A.2
  • 15
    • 0036661770 scopus 로고    scopus 로고
    • Applying Combined Neural Network and Physical Modelling to the Retention Process in Papermaking
    • Rooke, P. E., and Wang, H., 2002, "Applying Combined Neural Network and Physical Modelling to the Retention Process in Papermaking," Appita J., 55(4), pp. 281-286.
    • (2002) Appita J , vol.55 , Issue.4 , pp. 281-286
    • Rooke, P.E.1    Wang, H.2
  • 16
    • 0033098364 scopus 로고    scopus 로고
    • The Prediction of the Hot Strength in Steel With an Integrated Phenomenological and Artificial Neural Network Model
    • Hodgson, P. D., Kong, L. X., and Davis, C. H. J., 1999, "The Prediction of the Hot Strength in Steel With an Integrated Phenomenological and Artificial Neural Network Model," J. Mater. Process. Technol., 87(1), pp. 131-138.
    • (1999) J. Mater. Process. Technol , vol.87 , Issue.1 , pp. 131-138
    • Hodgson, P.D.1    Kong, L.X.2    Davis, C.H.J.3
  • 17
    • 0343443082 scopus 로고    scopus 로고
    • Neural Net Based Hybrid Modeling of Methanol Syntesis Process
    • Potocnik, P., 2003, "Neural Net Based Hybrid Modeling of Methanol Syntesis Process," Neural Processing Letters, 11, pp. 219-228.
    • (2003) Neural Processing Letters , vol.11 , pp. 219-228
    • Potocnik, P.1
  • 18
    • 0035089087 scopus 로고    scopus 로고
    • Hybrid Modelling of the Sucrose Crystal Growth Rate
    • Lauret, P., Boyer, H., and Gatina, J. C., 2001, "Hybrid Modelling of the Sucrose Crystal Growth Rate," Int. J. Model. Simulat., 21(1), pp. 23-29.
    • (2001) Int. J. Model. Simulat , vol.21 , Issue.1 , pp. 23-29
    • Lauret, P.1    Boyer, H.2    Gatina, J.C.3
  • 19
    • 0034130437 scopus 로고    scopus 로고
    • Use of Hybrid Models in Wastewater Systems
    • Anderson, S., McAvoy, T. J., and Hao, O. J., 2000, "Use of Hybrid Models in Wastewater Systems," Ind. Eng. Chem. Res., 39(6), pp. 1694-1704.
    • (2000) Ind. Eng. Chem. Res , vol.39 , Issue.6 , pp. 1694-1704
    • Anderson, S.1    McAvoy, T.J.2    Hao, O.J.3
  • 20
    • 0042911616 scopus 로고    scopus 로고
    • Hybrid Modelling of Aluminium-Magnesium Alloys During Thermomecanical Processing in Terms of Physically-based, Neuro-Fuzzy and Finite Element Models
    • Zhu, Q., Abbod, M. F., Talamantes-Silva, J., Sellars, C. M., Linkens, D. A., and Beynon, J. H., 2003, "Hybrid Modelling of Aluminium-Magnesium Alloys During Thermomecanical Processing in Terms of Physically-based, Neuro-Fuzzy and Finite Element Models," Acta Mater., 51, pp. 5051-5062.
    • (2003) Acta Mater , vol.51 , pp. 5051-5062
    • Zhu, Q.1    Abbod, M.F.2    Talamantes-Silva, J.3    Sellars, C.M.4    Linkens, D.A.5    Beynon, J.H.6
  • 21
    • 0036939352 scopus 로고    scopus 로고
    • Prediction of Hot Strength of Steels With Advanced Models
    • Kong, L. X., and Hodgson, P. D., 2003, "Prediction of Hot Strength of Steels With Advanced Models," Key Eng. Mater., 233-236, pp. 743-748.
    • (2003) Key Eng. Mater , vol.233-236 , pp. 743-748
    • Kong, L.X.1    Hodgson, P.D.2
  • 22
    • 0038620619 scopus 로고
    • Temperature and Structural Changes During Hot Rolling,
    • Ph.D. thesis
    • Harding, R. A., 1976, "Temperature and Structural Changes During Hot Rolling," Ph.D. thesis.
    • (1976)
    • Harding, R.A.1
  • 23
    • 33845540848 scopus 로고    scopus 로고
    • Modelling the Recalescence After Bar Reduction During Hot Rolling
    • Méndez, G. M., Leduc, L. A., Colás, R., Cavazos, A., and Soto, R., 2006, "Modelling the Recalescence After Bar Reduction During Hot Rolling," Iron-making Steelmaking, 33(6), pp. 484-492.
    • (2006) Iron-making Steelmaking , vol.33 , Issue.6 , pp. 484-492
    • Méndez, G.M.1    Leduc, L.A.2    Colás, R.3    Cavazos, A.4    Soto, R.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.